## 3 Measurable Functions

Notation A pair $(X, \mathcal{F})$ where $\mathcal{F}$ is a $\sigma$-field of subsets of $X$ is a measurable space.

If $\mu$ is a measure on $\mathcal{F}$ then $(X, \mathcal{F}, \mu)$ is a measure space.
If $\mu(X)<\infty$ then $(X, \mathcal{F}, \mu)$ is a probability space and $\mu$ a probability measure. The measure can, and normally is, renormalised such that $\mu(X)=$ 1.

Definition The extended Borel sets $\mathcal{B}^{*}$ of $\mathbb{R}^{*}$ is the set of unions of sets from $\mathcal{B}$ with subsets of $\{-\infty,+\infty\}$.

I leave it to the student to check that $\mathcal{B}^{*}$ is a $\sigma$-field.
Importantly we have

## Proposition 3.1

The $\sigma$-field $\mathcal{B}^{*}$ is the $\sigma$-field generated in $\mathbb{R}^{*}$ by all intervals $(c,+\infty], c \in$ $\mathbb{R}$.

## Proof

Let $\mathcal{G}$ be the $\sigma$-field generated by these intervals. Then $\mathbb{R}^{*} \backslash(c,+\infty]=$ $[-\infty, c] \in \mathcal{G}$ for all $c \in \mathbb{R}$. Thus $(c,+\infty] \cap[-\infty, d]=(c, d] \in \mathcal{G}$ for all $c, d \in \mathbb{R}$. So $\mathcal{G}$ must contain the smallest $\sigma$-field containing $(c, d]$ for all $c, d \in \mathbb{R}$, namely $\mathcal{B}$.

Also $\mathcal{G}$ contains $\{+\infty\}=\bigcap_{n \geq 1}(n,+\infty]$ and $\{-\infty\}=\bigcap_{n \geq 1}[-\infty,-n]$.
Hence $\mathcal{G}$ contains the smallest $\sigma$-field containing $\mathcal{B}$ and $\{-\infty,+\infty\}$, that is, $\mathcal{B}^{*}$. So $\mathcal{B}^{*} \subseteq \mathcal{G}$.

Trivially each $(c,+\infty]=\bigcup_{n \geq 1}(c, n] \cup\{+\infty\} \in \mathcal{B}^{*}$. So the smallest $\sigma$-field containing these $(c,+\infty]$ must be contained in any other $\sigma$-field containing them, i.e. $\mathcal{G} \subseteq \mathcal{B}^{*}$.

Hence $\mathcal{G}=\mathcal{B}^{*}$.
Obviously the same $\sigma$-field is generated by the intervals $\{[c,+\infty], c \in \mathbb{R}\}$ or $\{[-\infty, c], c \in \mathbb{R}\}$ or $\{[-\infty, c), c \in \mathbb{R}\}$.
*For a justification of the following definitions we might look ahead to how we will integrate functions $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$. One method is to approximate $f$ by splitting the range of $f$, that is $\mathbb{R}$, into intervals $\left(a_{\nu}, a_{\nu+1}\right]$ and examining the set $\left\{x \in X: a_{\nu}<f(x) \leq a_{\nu+1}\right\}$. We would like such sets to be measurable, i.e. elements of $\mathcal{F}$. So it seems reasonable that we demand that the pre-images of the intervals $\left(a_{\nu}, a_{\nu+1}\right]$, or the $\sigma$-field generated by them, should lie in $\mathcal{F}$.

## Definition

A map $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ is $\mathcal{F}$-measurable if, and only if, $f^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}^{*}$.

Special cases: We say $f:\left(\mathbb{R}, \mathcal{L}_{F}\right) \rightarrow \mathbb{R}^{*}$ is Lebesgue-Stieltjes measurable and $f:(\mathbb{R}, \mathcal{B}) \rightarrow \mathbb{R}^{*}$ is Borel measurable.

In general we have
Definition A map $f:\left(X, \mathcal{F}_{X}\right) \rightarrow\left(Y, \mathcal{F}_{Y}\right)$ between measurable spaces is said to be measurable with respect to $\mathcal{F}_{X}, \mathcal{F}_{Y}$, if, and only if, $f^{-1}(A) \in \mathcal{F}_{X}$ for all $A \in \mathcal{F}_{Y}$.
(Compare this to the definition of a continuous function between topological spaces.)
${ }^{*}$ Note To say that $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ is $\mathcal{F}$-measurable is equivalent to saying $f:(X, \mathcal{F}) \rightarrow\left(\mathbb{R}^{*}, \mathcal{B}^{*}\right)$ measurable with respect to $\mathcal{F}, \mathcal{B}^{*}$. It would be too restrictive to look only at functions $f:(X, \mathcal{F}) \rightarrow\left(\mathbb{R}^{*}, \mathcal{L}^{*}\right)$ measurable with respect to $\mathcal{F}, \mathcal{L}^{*}$. (The definition of $\mathcal{L}^{*}$ should be obvious.) It is shown in an appendix that $\mathcal{L}$ is strictly larger than $\mathcal{B}$ and so $\mathcal{L}^{*}$ is strictly larger than $\mathcal{B}^{*}$. So if $f$ is measurable with respect to $\mathcal{F}, \mathcal{L}^{*}$ we are saying that $f^{-1}(V) \in \mathcal{F}$ for all $V \in \mathcal{L}^{*}$ which is demanding more than $f^{-1}(V) \in \mathcal{F}$ just for all $V \in \mathcal{B}^{*}$ and so is satisfied by fewer functions.

We want to give a criteria for checking whether a function is $\mathcal{F}$-measurable that is quicker than looking at $f^{-1}(B)$ for all extended Borel sets. First we state results concerning preimages: It can be checked by the student that for any sets $A_{i}, i \in I$ we have

$$
\begin{equation*}
f^{-1}\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f^{-1}\left(A_{i}\right), \quad f^{-1}\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I} f^{-1}\left(A_{i}\right) \tag{12}
\end{equation*}
$$

and $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$.
Notation If A is a collection of sets then $h^{-1}(\mathcal{A})$ is the collection of preimages of each set in $\mathcal{A}$.

We use this notation and (12) in the "tricky" proof of the following.
Lemma 3.2 If $h:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ and $\mathcal{A}$ is a non-empty collection of subsets of $\mathbb{R}^{*}$, then

$$
\sigma\left(h^{-1}(\mathcal{A})\right)=h^{-1}(\sigma(\mathcal{A})) .
$$

Proof We first show that $\sigma\left(h^{-1}(\mathcal{A})\right) \subseteq h^{-1}(\sigma(\mathcal{A}))$ by showing that $h^{-1}(\sigma(\mathcal{A}))$ is a $\sigma$-field. Let $\left\{B_{i}\right\}_{i \geq 1} \subseteq h^{-1}(\sigma(\mathcal{A}))$ be a countable collection of sets. Then for all $i$ we have that $B_{i}=h^{-1}\left(A_{i}\right)$ for some $A_{i} \in \sigma(\mathcal{A})$. Since $\sigma(\mathcal{A})$ is a $\sigma$-field we have $\bigcup_{i \geq 1} A_{i} \in \sigma(\mathcal{A})$ and so

$$
\begin{array}{rlr}
\bigcup_{i \geq 1} B_{i} & =\bigcup_{i \geq 1}\left(h^{-1}\left(A_{i}\right)\right) \\
& =h^{-1}\left(\bigcup_{i \geq 1} A_{i}\right) & \text { by }(12) \\
& \in h^{-1}(\sigma(\mathcal{A}))
\end{array}
$$

Thus $h^{-1}(\sigma(\mathcal{A}))$ is closed under countable unions. Now take any $B, C \in$ $h^{-1}(\sigma(\mathcal{A}))$ so $B=h^{-1}(S)$ and $C=h^{-1}(T)$ for some $S, T \in \sigma(\mathcal{A})$. Then

$$
\begin{array}{rlr}
B \backslash C & =B \cap C^{c} & \\
& =h^{-1}(S) \cap h^{-1}\left(T^{c}\right) & \text { by }(12), \\
& =h^{-1}\left(S \cap T^{c}\right) & \text { by }(12) \\
& =h^{-1}(S \backslash T) & \\
& \in h^{-1}(\sigma(\mathcal{A})) \text { since } \sigma(\mathcal{A}) \text { is a } \sigma \text {-field. }
\end{array}
$$

Hence $h^{-1}(\sigma(\mathcal{A}))$ is a $\sigma$-field. It obviously contains $h^{-1}(\mathcal{A})$ and so contains the minimal $\sigma$-field containing $h^{-1}(\mathcal{A})$, that is, $\sigma\left(h^{-1}(\mathcal{A})\right) \subseteq h^{-1}(\sigma(\mathcal{A}))$.

To obtain the reverse set inclusion we look at what sets have a preimage in $\sigma\left(h^{-1}(\mathcal{A})\right)$, hopefully all the sets in $\sigma(\mathcal{A})$ have a preimage in $\sigma\left(h^{-1}(\mathcal{A})\right)$. Consider now $\mathcal{H}=\left\{E \subseteq \mathbb{R}^{*}: h^{-1}(E) \in \sigma\left(h^{-1}(\mathcal{A})\right)\right\}$. From (12) we can quickly check that this is a $\sigma$-field. It trivially contains $\mathcal{A}$ and so $\sigma(\mathcal{A}) \subseteq \mathcal{H}$. By the definition of $\mathcal{H}$ this means that $h^{-1}(\sigma(\mathcal{A})) \subseteq \sigma\left(h^{-1}(\mathcal{A})\right)$.

Hence equality.

## Theorem 3.3

The function $f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ is $\mathcal{F}$-measurable if, and only if,

$$
\{x: f(x)>c\} \in \mathcal{F}
$$

for all $c \in \mathbb{R}$.
Proof Let $\mathcal{A}$ be the collection of semi-infinite intervals $(c,+\infty]$ for all $c \in \mathbb{R}$. Then by Proposition 3.1 we have that $\sigma(\mathcal{A})=\mathcal{B}^{*}$. So if we start with the definition of $F$-measurable we find

$$
\begin{array}{rlll}
f^{-1}\left(\mathcal{B}^{*}\right) \subseteq \mathcal{F} & \text { iff } & f^{-1}(\sigma(\mathcal{A})) \subseteq \mathcal{F} & \\
& \text { iff } & \sigma\left(f^{-1}(\mathcal{A})\right) \subseteq \mathcal{F} & \text { by Lemma 3.2, } \\
& \text { iff } & f^{-1}(\mathcal{A}) \subseteq \mathcal{F} & \text { since } \mathcal{F} \text { is a } \sigma \text {-field, } \\
& \text { iff } & f^{-1}((c,+\infty]) \subseteq \mathcal{F} & \text { for all } c \in \mathbb{R}, \text { by definition of } \mathcal{G}, \\
& \text { iff } & \{x: f(x)>c\} \in \mathcal{F} & \text { for all } c \in \mathbb{R} .
\end{array}
$$

(For students: do check that you understand exactly why, in the proof, we have $\sigma\left(f^{-1}(\mathcal{A})\right) \subseteq \mathcal{F}$ iff $\quad f^{-1}(\mathcal{A}) \subseteq \mathcal{F}$ (see Question13).)
Notes (i) Theorem 3.3 is often taken as the definition of $\mathcal{F}$-measurable.
(ii) It is easy to show that $f$ is $\mathcal{F}$-measurable if, and only if,

$$
\begin{array}{llll} 
& \{x: f(x)<c\} \in \mathcal{F} & \text { for all } c \in \mathbb{R} \\
\text { or } & \{x: f(x) \geq c\} \in \mathcal{F} & \text { for all } c \in \mathbb{R} \\
\text { or } & \{x: f(x) \leq c\} \in \mathcal{F} & \text { for all } c \in \mathbb{R} .
\end{array}
$$

## Example 10

$f:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}, f \equiv \kappa$ a constant, possibly $\pm \infty$, is $\mathcal{F}$-measurable. This is simply because

$$
\{x: f(x)>c\}=\left\{\begin{array}{l}
X \text { if } c<\kappa \\
\phi \text { if } c \geq \kappa
\end{array}\right.
$$

In all cases the resulting set is in $\mathcal{F}$.
The next result supplies us with many examples of measurable functions.

## Example 11

Let $g:\left(\mathbb{R}, \mathcal{L}_{F}\right) \rightarrow \mathbb{R}$ be $\mathcal{L}_{F}$-measurable, $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $h:(X, \mathcal{F}) \rightarrow \mathbb{R}$ be $\mathcal{F}$-measurable. Then
(i) $f$ is Lebesgue measurable,
(ii) the composite $f \circ g$ is $\mathcal{L}_{F}$-measurable,
(iii) the composite $f \circ h$ is $\mathcal{F}$-measurable.

Proof Note that $f$ and $g$ are finite valued so we need only look at the preimage of $(c, \infty)=\bigcup_{n \geq 1}(c, n) \in \mathcal{U}$, the usual topology on $\mathbb{R}$.
(i) Since $f$ is continuous we have that $f^{-1}((c, \infty)) \in \mathcal{U}$. But $\mathcal{U} \subseteq \mathcal{B} \subseteq \mathcal{L}_{F}$, and so

$$
\{x: f(x)>c\}=f^{-1}((c, \infty)) \in \mathcal{L}_{F} .
$$

(ii) Since $g:\left(\mathbb{R}, \mathcal{L}_{F}\right) \rightarrow \mathbb{R}$ is $\mathcal{L}_{F}$-measurable and $f^{-1}((c, \infty)) \in \mathcal{U} \subseteq \mathcal{B}$ then $g^{-1}\left(f^{-1}((c, \infty))\right) \in \mathcal{L}_{F}$. Hence $(f \circ g)^{-1}((c, \infty)) \in \mathcal{L}_{F}$ and so $f \circ g$ is $\mathcal{L}_{F}$-measurable.
(iii) Since $h:(X, \mathcal{F}) \rightarrow \mathbb{R}$ is $\mathcal{F}$-measurable and $f^{-1}((c, \infty)) \in \mathcal{U} \subseteq \mathcal{B}$ then $h^{-1}\left(f^{-1}((c, \infty))\right) \in \mathcal{L}_{F}$ and so $f \circ h$ is $\mathcal{L}_{F}$-measurable.
Theorem 3.4
Let $f, g:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ be $\mathcal{F}$-measurable functions. Let $\alpha, \beta \in \mathbb{R}$. Then
(i) $f+\alpha$ and $\alpha f$ are $\mathcal{F}$-measurable,
(ii) $f^{2}$ is $\mathcal{F}$-measurable,
(iii) $\{x \in X: f(x)>g(x)\} \in \mathcal{F}$,
(vi) $\{x \in X: f(x)=g(x)\} \in \mathcal{F}$,
(v) on the set of $x$ for which it is defined, $\alpha f+\beta g$ is $\mathcal{F}$-measurable,
(vi) $f g$ is $\mathcal{F}$-measurable,
(vii) on the set of $x$ for which it is defined, $f / g$ is $\mathcal{F}$-measurable,
(viii) $\max (f, g)$ and $\min (f, g)$ are $\mathcal{F}$-measurable,
(ix) $|f|$ is $\mathcal{F}$-measurable.

## Proof

(i) $\{x \in X: f(x)+\alpha>c\}=\{x \in X: f(x)>c-\alpha\} \in \mathcal{F}$ since $f$ is $\mathcal{F}$-measurable. Hence $f+\alpha$ is $\mathcal{F}$-measurable.

If $\alpha=0$ then $\{x \in X: \alpha f(x)>c\}=\phi$ if $c \geq 0$ and $X$ if $c<0$. In both cases the set is in $\mathcal{F}$.

If $\alpha>0$ then $\{x \in X: \alpha f(x)>c\}=\left\{x \in X: f(x)>\frac{c}{\alpha}\right\} \in \mathcal{F}$ since $f$ is $\mathcal{F}$-measurable.

If $\alpha<0$ then $\{x \in X: \alpha f(x)>c\}=\left\{x \in X: f(x)<\frac{c}{\alpha}\right\} \in \mathcal{F}$ since $f$ is $\mathcal{F}$-measurable.

In all cases $\{x \in X: \alpha f(x)>c\} \in \mathcal{F}$ and so $\alpha f$ is $\mathcal{F}$-measurable.
(ii)

$$
\left\{x \in X: f^{2}(x)>c\right\}=\left\{\begin{array}{l}
X \quad \text { if } c<0 \\
\{x \in X: f(x)>\sqrt{c}\} \cup\{x \in X: f(x)<-\sqrt{c}\} \\
\quad \text { if } c \geq 0
\end{array}\right.
$$

In all cases the resulting set is in $\mathcal{F}$.
(iii) Note that for any two numbers $c, d$ we have $c>d$ if, and only if, there exists a rational number $r$ such that $c>r>d$. Hence

$$
\{x \in X: f(x)>g(x)\}=\bigcup_{r \in \mathbb{Q}}(\{x \in X: f(x)>r\} \cap\{x \in X: r>g(x)\}) .
$$

All sets on the right are in $\mathcal{F}$ as is the intersection and countable union. (iv) As in part (iii) we can show that $\{x \in X: g(x)>f(x)\} \in \mathcal{F}$. Then

$$
\begin{aligned}
\{x & \in X: f(x)=g(x)\} \\
& =X \backslash(\{x \in X: f(x)>g(x)\} \cup\{x \in X: g(x)>f(x)\})
\end{aligned}
$$

is an element of $\mathcal{F}$.
(v) By part (i) it suffices to prove that $f+g$ is $\mathcal{F}$-measurable. Recall that $(+\infty)+(-\infty)$ is not defined so $f+g$ is defined only on $X \backslash A$ where

$$
\begin{aligned}
A & =\{x \in X: f(x)= \pm \infty, g(x)=\mp \infty\} \\
& =\{x \in X: f(x)=-g(x)\} \cap\{x \in X: f(x)= \pm \infty\} \\
& \in \mathcal{F}
\end{aligned}
$$

by Example 10 and part (iv). Then

$$
\{x \in X \backslash A: f(x)+g(x)>c\}=(X \backslash A) \cap\{x \in X: f(x)>c-g(x)\}
$$

which is in $\mathcal{F}$ by (iii).
(vi) Continue with the notation of part (v). Then on $X \backslash A$ we can meaningfully write

$$
f g=\frac{(f+g)^{2}-f^{2}-g^{2}}{2}
$$

which is therefore $\mathcal{F}$-measurable, on $X \backslash A$, by parts (ii) and (v). On $A$ we have either $f(x)=+\infty$ and $g(x)=-\infty$ or $f(x)=-\infty, g(x)=+\infty$. In both cases $f g$ is defined with value $-\infty$. Thus $\{x \in A: f g(x)>c\}=\phi \in \mathcal{F}$ for all $c \in \mathbb{R}$. Hence $f g$ is $\mathcal{F}$-measurable, on $X$.
(vii) By part (vi) it suffices to prove that $1 / g$ is $\mathcal{F}$-measurable. This is only defined on $X \backslash B$ where

$$
B=\{x \in X: g(x)=0\} \in \mathcal{F}
$$

by Example 10. First assume $c>0$ then

$$
\begin{aligned}
\left\{x \in X \backslash B: \frac{1}{g(x)}>c\right\} & =\left\{x \in X \backslash B: 0 \leq g(x)<\frac{1}{c}\right\} \\
& =\left\{x \in X: 0<g(x)<\frac{1}{c}\right\} \\
& =\left\{x \in X: g(x)<\frac{1}{c}\right\} \backslash\{x \in X: g(x) \leq 0\}
\end{aligned}
$$

which is in $\mathcal{F}$ since $g$ is $\mathcal{F}$-measurable. If $c \leq 0$ then

$$
\begin{aligned}
\left\{x \in X \backslash B: \frac{1}{g(x)}>c\right\}= & \{x \in X \backslash B: 0 \leq g(x)\} \\
& \cup\left\{x \in X \backslash B: g(x)<\frac{1}{c}\right\} \\
= & \{x \in X: 0<g(x)\} \cup\left\{x \in X: g(x)<\frac{1}{c}\right\}
\end{aligned}
$$

which is in $\mathcal{F}$.
(viii) For the max and min we need do no more than observe that

$$
\begin{aligned}
& \{x: \max (f(x), g(x))>c\}=\{x: f(x)>c\} \cup\{x: g(x)>c\} \\
& \{x: \min (f(x), g(x))>c\}=\{x: f(x)>c\} \cap\{x: g(x)>c\} .
\end{aligned}
$$

(ix) Let $f^{+}=\max (f, 0)$ and $f^{-}=-\min (f, 0)$. (The - ve sign is taken so that $f^{-} \geq 0$.) Then $f^{+}$and $f^{-}$are $\mathcal{F}$-measurable by (viii). And so $|f|=f^{+}+f^{-}$ is $\mathcal{F}$-measurable by part (v).

### 3.1 Sequences of Functions

Let $\left\{x_{n}\right\} \subseteq \mathbb{R}^{*}$ be a sequence of extended real numbers. We can give an extended definition of limit in the following.

## Definition

$\lim _{n \rightarrow \infty} x_{n}=\ell$ with $\ell$ finite if, and only if, $\forall \varepsilon>0 \exists N:\left|x_{n}-\ell\right|<\varepsilon$ $\forall n \geq N$.
$\lim _{n \rightarrow \infty} x_{n}=+\infty$ if, and only if, $\forall K>0 \exists N: x_{n}>K \forall n \geq N$.
$\lim _{n \rightarrow \infty} x_{n}=-\infty$ if, and only if, $\forall K<0 \exists N: x_{n}<K \forall n \geq N$.
Recall the definition of $\sup _{n \geq 1} x_{n}$ can be given as $\alpha=\sup _{n \geq 1} x_{n}$ if $\alpha \geq x_{n}$ for all $n$ and given any $\varepsilon>0$ there exists $N \geq 1$ such that $\alpha-\varepsilon<x_{N} \leq \alpha$. Of course, implicit in this definition is that $\sup _{n \geq 1} x_{n}$ is finite. We can extend to when $\sup _{n \geq 1} x_{n}=+\infty$ or $-\infty$. Of course, in the first case we do not have to check that $+\infty$ is an upper bound since that is necessarily true and in the second case the demand that $-\infty$ means that $x_{n}=-\infty$ for all $n$.

## Definition

$\sup _{n \geq 1} x_{n}=+\infty$ if, and only if, $\forall K>0 \exists N: x_{N}>K$.
$\sup _{n \geq 1} x_{n}=-\infty$ if, and only if, $\forall n \geq 1, x_{n}=-\infty$.
$\inf _{n \geq 1} x_{n}=+\infty$ if, and only if, $\forall n \geq 1, x_{n}=+\infty$.
$\inf _{n \geq 1} x_{n}=-\infty$ if, and only if $\forall K<0 \exists N: x_{N}<K$.

Of course a sequence need not have a limit. But we can define forms of limit that exist for all sequences.

## Definition

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty}\left(\sup _{r \geq n} x_{r}\right) . \\
\liminf _{n \rightarrow \infty} x_{n} & =\lim _{n \rightarrow \infty}\left(\inf _{r \geq n} x_{r}\right) .
\end{aligned}
$$

We can see that these always exist in the following way. We note that $\left\{x_{r}\right\}_{r \geq n+1} \subseteq\left\{x_{r}\right\}_{r \geq n}$ and so

$$
\sup _{r \geq n+1} x_{r} \leq \sup _{r \geq n} x_{r} .
$$

Thus $\left\{\sup _{r \geq n} x_{r}\right\}_{n \geq 1}$ is a decreasing sequence and because of our extended definition of limit such a series converges. Either the sequence is bounded below when it converges to a finite value, namely the infimum of the sequence, or it is not bounded below when it converges to $-\infty$ by the extended definition above, which again is the infimum of the sequence. So in both cases we find that

$$
\limsup _{n \rightarrow \infty} x_{n}=\inf _{n \geq 1}\left(\sup _{r \geq n} x_{r}\right) .
$$

In the same way we have that $\left\{\inf _{r \geq n} x_{r}\right\}_{n \geq 1}$ is an increasing sequence. This leads to

$$
\liminf _{n \rightarrow \infty} x_{n}=\sup _{n \geq 1}\left(\inf _{r \geq n} x_{r}\right) .
$$

We then have the important result

## Theorem 3.5

The limit $\lim _{n \rightarrow \infty} x_{n}$ exists if, and only if, $\liminf _{n \rightarrow \infty} x_{n}=\lim \sup _{n \rightarrow \infty} x_{n}$. The common value (even if $+\infty$ or $-\infty$ ) is the value of the limit.
*Proof (Not given in lecture.)
$(\Rightarrow)$ Assume $\lim _{n \rightarrow \infty} x_{n}$ exists and is finite, $\ell$ say. Then

$$
\forall \varepsilon>0 \exists N:\left|x_{n}-\ell\right|<\varepsilon \quad \forall n \geq N
$$

and so $\ell-\varepsilon<x_{n}<\ell+\varepsilon$ for such $n$. That is, $\ell-\varepsilon$ is a lower bound for $\left\{x_{r}\right\}_{r \geq n}$ for any $n \geq N$ and thus $\ell-\varepsilon \leq \inf \left\{x_{r}\right\}_{r \geq n}=\inf _{r \geq n} x_{r}$. But also, $\inf _{r \geq n} x_{r} \leq x_{n}<\ell+\varepsilon$. So

$$
\ell-\varepsilon \leq \inf _{r \geq n} x_{r}<\ell+\varepsilon \quad \forall n \geq N
$$

(Note how a strict inequality has changed to a $\leq$ ). This shows that the definition of limit is satisfied for the sequence $\left\{\inf _{r \geq n} x_{r}\right\}_{n \geq 1}$ and so $\lim _{n \rightarrow \infty}\left(\inf _{r \geq n} x_{r}\right)$ $=\ell$. Similarly

$$
\ell-\varepsilon<\sup _{r \geq n} x_{r} \leq \ell+\varepsilon \quad \forall n \geq N
$$

leading to $\lim _{n \rightarrow \infty}\left(\sup _{r \geq n} x_{r}\right)=\ell$.
Assume $\lim _{n \rightarrow \infty} x_{n}$ exists and is $+\infty$. Then

$$
\forall K>0 \exists N: x_{n}>K \quad \forall n \geq N
$$

In particular $K \leq \inf _{r \geq n} x_{r}$ for such $n$. (Obviously $\sup _{r \geq n} x_{r}=+\infty$ and so $\left.\lim _{n \rightarrow \infty}\left(\sup _{r \geq n} x_{r}\right)=+\infty\right)$ But now we have seen that the extended definition of limit is satisfied for the sequence $\left\{\inf _{r \geq n} x_{r}\right\}_{n}$ and so $\lim _{n \rightarrow \infty}\left(\inf _{r \geq n} x_{r}\right)$ $=+\infty$.

The same proof holds when $\lim _{n \rightarrow \infty} x_{n}$ exists and is $-\infty$.
$(\Leftarrow)$ Assume now that $\liminf _{n \rightarrow \infty} x_{n}=\limsup \operatorname{sum}_{n \rightarrow \infty} x_{n}$ with a finite limit, $\ell$, say. Then $\lim \inf _{n \rightarrow \infty} x_{n}=\ell$ means that

$$
\forall \varepsilon>0 \exists N_{1}:\left|\inf _{r \geq n} x_{r}-\ell\right|<\varepsilon \forall n \geq N_{1}
$$

In particular

$$
\begin{equation*}
x_{n} \geq \inf _{r \geq n} x_{r}>\ell-\varepsilon \tag{13}
\end{equation*}
$$

for such $n$.
Similarly $\lim \sup _{n \rightarrow \infty} x_{n}=\ell$ means that

$$
\forall \varepsilon>0 \exists N_{2}:\left|\sup _{r \geq n} x_{r}-\ell\right|<\varepsilon \forall n \geq N_{2}
$$

In particular

$$
\begin{equation*}
x_{n} \leq \sup _{r \geq n} x_{r}<\ell+\varepsilon \tag{14}
\end{equation*}
$$

for such $n$. Let $N=\max \left(N_{1}, N_{2}\right)$ then for all $n \geq N$ we can combine (13) and (14) to get $\ell-\varepsilon<x_{n}<\ell+\varepsilon$ and so $\lim _{n \rightarrow \infty} x_{n}=\ell$.

Assume now that $\liminf _{n \rightarrow \infty} x_{n}=\lim \sup _{n \rightarrow \infty} x_{n}=+\infty$. Then

$$
\forall K>0 \exists N: \inf _{r \geq n} x_{r}>K \forall n \geq N
$$

and in particular $x_{n} \geq \inf _{r \geq n} x_{r}>K \forall n \geq N$ and so $\lim _{n \rightarrow \infty} x_{n}=+\infty$.
A similar proof holds when the common limit is $-\infty$.
Note For any sequence $\left\{x_{n}\right\} \subseteq \mathbb{R}^{*}$ we have $\sup _{n \geq 1} x_{n}=-\inf _{n \geq 1}\left(-x_{n}\right)$ and $\sup _{n \geq 1} x_{n}>c$ if, and only if, there exists $i: x_{i}>c$.
( ${ }^{*}$ Proof is left to student. For the second result note first that $\sup _{n \geq 1} x_{n}=$ $+\infty$ iff $\forall K>0 \exists N: x_{N}>K$. Choose $K=c$ to get the result. Otherwise $\sup _{n \geq 1} x_{n}=\ell$ a finite value when we know that given any $\varepsilon>0$ there exists $N \geq 1$ such that $\ell-\varepsilon<x_{N} \leq \ell$. Simply choose $\varepsilon$ so that $\ell-\varepsilon \geq c$, perhaps $\varepsilon=(\ell-c) / 2$, to get the result.).

Let $f_{n}:(X, \mathcal{F}) \rightarrow \mathbb{R}^{*}$ be a sequence of $\mathcal{F}$-measurable functions and define $\sup _{n \geq 1} f_{n}$ and $\inf _{n \geq 1} f_{n}$ pointwise, that is, for all $x \in X$ define $\left(\sup _{n \geq 1} f_{n}\right)(x)$ $=\sup _{n \geq 1} f_{n}(x)$ and $\left(\inf _{n \geq 1} f_{n}\right)(x)=\inf _{n \geq 1} f_{n}(x)$.

## Theorem 3.6

i) The functions $\sup _{n \geq 1} f_{n}$ and $\inf _{n \geq 1} f_{n}$ are $\mathcal{F}$-measurable functions.
ii) The functions $\lim \inf _{n \rightarrow \infty} f_{n}$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} f_{n}$ are $\mathcal{F}$-measurable functions.
iii) The set of $x \in X$ for which $\lim _{n \rightarrow \infty} f_{n}(x)$ exists is a measurable set.
iv) On the set of $x$ for which $\lim _{n \rightarrow \infty} f_{n}(x)$ exists the limit function is $\mathcal{F}$ measurable.

## Proof

i) Let $c \in \mathbb{R}$. From the note above we have

$$
\begin{aligned}
\left\{x: \sup _{n \geq 1} f_{n}(x)>c\right\} & =\left\{x: \text { there exists } i \text { for which } f_{i}(x)>c\right\} \\
& =\bigcup_{i \geq 1}\left\{x: f_{i}(x)>c\right\} \in \mathcal{F}
\end{aligned}
$$

since each $f_{i}$ is $\mathcal{F}$-measurable and $\mathcal{F}$ is closed under countable unions. Hence $\sup _{n \geq 1} f_{n}$ is $\mathcal{F}$-measurable.

For the infimum we use the note again to deduce that $\inf _{n \geq 1} f_{n}=-\sup _{n \geq 1}$ $\left(-f_{n}\right)$ is $\mathcal{F}$-measurable.
ii) As observed above we have

$$
\liminf _{n \rightarrow \infty} f_{n}=\sup _{n \geq 1}\left(\inf _{r \geq n} f_{r}\right) \quad \text { and } \quad \limsup _{n \rightarrow \infty} f_{n}=\inf _{n \geq 1}\left(\sup _{r \geq n} f_{r}\right) .
$$

So part (i) gives the result for $\liminf _{n \rightarrow \infty} f_{n}$ and $\limsup _{n \rightarrow \infty} f_{n}$.
iii) By Theorem 3.5 we have

$$
\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\}=\left\{x \in X: \liminf _{n \rightarrow \infty} f_{n}(x)=\limsup _{n \rightarrow \infty} f_{n}(x)\right\}
$$

So our set is that of points at which two $\mathcal{F}$-measurable functions are equal. By Theorem $3.4(\mathrm{vi})$ such a set is an element of $\mathcal{F}$.
iv) Let $A=\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $\}$ then

$$
\begin{aligned}
& \left\{x \in A: \lim _{n \rightarrow \infty} f_{n}(x)>c\right\} \\
= & \left\{x \in A: \liminf _{n \rightarrow \infty} f_{n}(x)>c\right\} \quad \text { since } \liminf _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} f_{n} \text { on } A, \\
= & A \cap\left\{x \in X: \liminf _{n \rightarrow \infty} f_{n}(x)>c\right\} \quad \text { since } \liminf _{n \rightarrow \infty} f_{n} \text { defined on all of } X, \\
\in & \mathcal{F},
\end{aligned}
$$

using parts (ii) and (iii).

Note This limit result for measurable functions does not necessarily hold for continuous functions even though continuous functions are measurable. For example, $f_{n}(x)=x^{n}$ are continuous on [0,1] yet inf $f_{n}(x)=0$ for $0 \leq x<1$ and 1 when $x=1$, and so not continuous.

