3 Measurable Functions

Notation A pair (X, \mathcal{F}) where \mathcal{F} is a σ -field of subsets of X is a *measurable space*.

If μ is a measure on \mathcal{F} then (X, \mathcal{F}, μ) is a measure space.

If $\mu(X) < \infty$ then (X, \mathcal{F}, μ) is a probability space and μ a probability measure. The measure can, and normally is, renormalised such that $\mu(X) = 1$.

Definition The *extended Borel sets* \mathcal{B}^* of \mathbb{R}^* is the set of unions of sets from \mathcal{B} with subsets of $\{-\infty, +\infty\}$.

I leave it to the student to check that \mathcal{B}^* is a σ -field.

Importantly we have

Proposition 3.1

The σ -field \mathcal{B}^* is the σ -field generated in \mathbb{R}^* by all intervals $(c, +\infty], c \in \mathbb{R}$.

Proof

Let \mathcal{G} be the σ -field generated by these intervals. Then $\mathbb{R}^* \setminus (c, +\infty) = [-\infty, c] \in \mathcal{G}$ for all $c \in \mathbb{R}$. Thus $(c, +\infty] \cap [-\infty, d] = (c, d] \in \mathcal{G}$ for all $c, d \in \mathbb{R}$. So \mathcal{G} must contain the smallest σ -field containing (c, d] for all $c, d \in \mathbb{R}$, namely \mathcal{B} .

Also \mathcal{G} contains $\{+\infty\} = \bigcap_{n>1} (n, +\infty]$ and $\{-\infty\} = \bigcap_{n>1} [-\infty, -n]$.

Hence \mathcal{G} contains the smallest σ -field containing \mathcal{B} and $\{-\infty, +\infty\}$, that is, \mathcal{B}^* . So $\mathcal{B}^* \subseteq \mathcal{G}$.

Trivially each $(c, +\infty] = \bigcup_{n \ge 1} (c, n] \cup \{+\infty\} \in \mathcal{B}^*$. So the smallest σ -field containing these $(c, +\infty]$ must be contained in any other σ -field containing them, i.e. $\mathcal{G} \subseteq \mathcal{B}^*$.

Hence $\mathcal{G} = \mathcal{B}^*$.

Obviously the same σ -field is generated by the intervals $\{[c, +\infty], c \in \mathbb{R}\}$ or $\{[-\infty, c], c \in \mathbb{R}\}$ or $\{[-\infty, c], c \in \mathbb{R}\}$.

For a justification of the following definitions we might look ahead to how we will integrate functions $f: (X, \mathcal{F}) \to \mathbb{R}^$. One method is to approximate f by splitting the **range** of f, that is \mathbb{R} , into intervals $(a_{\nu}, a_{\nu+1}]$ and examining the set $\{x \in X : a_{\nu} < f(x) \leq a_{\nu+1}\}$. We would like such sets to be measurable, i.e. elements of \mathcal{F} . So it seems reasonable that we demand that the pre-images of the intervals $(a_{\nu}, a_{\nu+1}]$, or the σ -field generated by them, should lie in \mathcal{F} .

Definition

A map $f: (X, \mathcal{F}) \to \mathbb{R}^*$ is \mathcal{F} -measurable if, and only if, $f^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}^*$.

Special cases: We say $f : (\mathbb{R}, \mathcal{L}_F) \to \mathbb{R}^*$ is Lebesgue-Stieltjes measurable and $f : (\mathbb{R}, \mathcal{B}) \to \mathbb{R}^*$ is Borel measurable.

In general we have

Definition A map $f : (X, \mathcal{F}_X) \to (Y, \mathcal{F}_Y)$ between measurable spaces is said to be *measurable with respect to* $\mathcal{F}_X, \mathcal{F}_Y$, if, and only if, $f^{-1}(A) \in \mathcal{F}_X$ for all $A \in \mathcal{F}_Y$.

(Compare this to the definition of a continuous function between topological spaces.)

Note To say that $f: (X, \mathcal{F}) \to \mathbb{R}^$ is \mathcal{F} -measurable is equivalent to saying $f: (X, \mathcal{F}) \to (\mathbb{R}^*, \mathcal{B}^*)$ measurable with respect to $\mathcal{F}, \mathcal{B}^*$. It would be too restrictive to look only at functions $f: (X, \mathcal{F}) \to (\mathbb{R}^*, \mathcal{L}^*)$ measurable with respect to $\mathcal{F}, \mathcal{L}^*$. (The definition of \mathcal{L}^* should be obvious.) It is shown in an appendix that \mathcal{L} is strictly larger than \mathcal{B} and so \mathcal{L}^* is strictly larger than \mathcal{B}^* . So if f is measurable with respect to $\mathcal{F}, \mathcal{L}^*$ we are saying that $f^{-1}(V) \in \mathcal{F}$ for all $V \in \mathcal{L}^*$ which is demanding more than $f^{-1}(V) \in \mathcal{F}$ just for all $V \in \mathcal{B}^*$ and so is satisfied by fewer functions.

We want to give a criteria for checking whether a function is \mathcal{F} -measurable that is quicker than looking at $f^{-1}(B)$ for all extended Borel sets. First we state results concerning preimages: It can be checked by the student that for any sets $A_i, i \in I$ we have

$$f^{-1}\left(\bigcup_{i\in I}A_i\right) = \bigcup_{i\in I}f^{-1}(A_i), \qquad f^{-1}\left(\bigcap_{i\in I}A_i\right) = \bigcap_{i\in I}f^{-1}(A_i) \qquad (12)$$

and $f^{-1}(A^c) = (f^{-1}(A))^c$.

Notation If A is a collection of sets then $h^{-1}(\mathcal{A})$ is the collection of preimages of each set in \mathcal{A} .

We use this notation and (12) in the "tricky" proof of the following.

Lemma 3.2 If $h: (X, \mathcal{F}) \to \mathbb{R}^*$ and \mathcal{A} is a non-empty collection of subsets of \mathbb{R}^* , then

$$\sigma(h^{-1}(\mathcal{A})) = h^{-1}(\sigma(\mathcal{A})).$$

Proof We first show that $\sigma(h^{-1}(\mathcal{A})) \subseteq h^{-1}(\sigma(\mathcal{A}))$ by showing that $h^{-1}(\sigma(\mathcal{A}))$ is a σ -field. Let $\{B_i\}_{i\geq 1} \subseteq h^{-1}(\sigma(\mathcal{A}))$ be a countable collection of sets. Then for all i we have that $B_i = h^{-1}(A_i)$ for some $A_i \in \sigma(\mathcal{A})$. Since $\sigma(\mathcal{A})$ is a σ -field we have $\bigcup_{i\geq 1} A_i \in \sigma(\mathcal{A})$ and so

$$\bigcup_{i \ge 1} B_i = \bigcup_{i \ge 1} (h^{-1}(A_i))$$
$$= h^{-1} \left(\bigcup_{i \ge 1} A_i \right) \qquad \text{by (12),}$$
$$\in h^{-1}(\sigma(\mathcal{A})).$$

Thus $h^{-1}(\sigma(\mathcal{A}))$ is closed under countable unions. Now take any $B, C \in h^{-1}(\sigma(\mathcal{A}))$ so $B = h^{-1}(S)$ and $C = h^{-1}(T)$ for some $S, T \in \sigma(\mathcal{A})$. Then

$$B \setminus C = B \cap C^{c}$$

= $h^{-1}(S) \cap h^{-1}(T^{c})$ by (12),
= $h^{-1}(S \cap T^{c})$ by (12)
= $h^{-1}(S \setminus T)$
 $\in h^{-1}(\sigma(\mathcal{A}))$ since $\sigma(\mathcal{A})$ is a σ -field.

Hence $h^{-1}(\sigma(\mathcal{A}))$ is a σ -field. It obviously contains $h^{-1}(\mathcal{A})$ and so contains **the** minimal σ -field containing $h^{-1}(\mathcal{A})$, that is, $\sigma(h^{-1}(\mathcal{A})) \subseteq h^{-1}(\sigma(\mathcal{A}))$.

To obtain the reverse set inclusion we look at what sets have a preimage in $\sigma(h^{-1}(\mathcal{A}))$, hopefully all the sets in $\sigma(\mathcal{A})$ have a preimage in $\sigma(h^{-1}(\mathcal{A}))$. Consider now $\mathcal{H} = \{E \subseteq \mathbb{R}^* : h^{-1}(E) \in \sigma(h^{-1}(\mathcal{A}))\}$. From (12) we can quickly check that this is a σ -field. It trivially contains \mathcal{A} and so $\sigma(\mathcal{A}) \subseteq \mathcal{H}$. By the definition of \mathcal{H} this means that $h^{-1}(\sigma(\mathcal{A})) \subseteq \sigma(h^{-1}(\mathcal{A}))$.

Hence equality.

Theorem 3.3

The function $f: (X, \mathcal{F}) \to \mathbb{R}^*$ is \mathcal{F} -measurable if, and only if,

$$\{x: f(x) > c\} \in \mathcal{F}$$

for all $c \in \mathbb{R}$.

Proof Let \mathcal{A} be the collection of semi-infinite intervals $(c, +\infty]$ for all $c \in \mathbb{R}$. Then by Proposition 3.1 we have that $\sigma(\mathcal{A}) = \mathcal{B}^*$. So if we start with the definition of F-measurable we find

$$\begin{split} f^{-1}(\mathcal{B}^*) &\subseteq \mathcal{F} & \text{iff} \quad f^{-1}(\sigma(\mathcal{A})) \subseteq \mathcal{F} \\ & \text{iff} \quad \sigma(f^{-1}(\mathcal{A})) \subseteq \mathcal{F} & \text{by Lemma 3.2,} \\ & \text{iff} \quad f^{-1}(\mathcal{A}) \subseteq \mathcal{F} & \text{since } \mathcal{F} \text{ is a } \sigma\text{-field,} \\ & \text{iff} \quad f^{-1}((c, +\infty]) \subseteq \mathcal{F} & \text{for all } c \in \mathbb{R}, \text{ by definition of } \mathcal{G}, \\ & \text{iff} \quad \{x: f(x) > c\} \in \mathcal{F} & \text{for all } c \in \mathbb{R}. \end{split}$$

(For students: do check that you understand exactly why, in the proof, we have $\sigma(f^{-1}(\mathcal{A})) \subseteq \mathcal{F}$ iff $f^{-1}(\mathcal{A}) \subseteq \mathcal{F}$ (see Question13).)

Notes (i) Theorem 3.3 is often taken as the definition of \mathcal{F} -measurable.

(ii) It is easy to show that f is \mathcal{F} -measurable if, and only if,

 $\{x : f(x) < c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R} \\ \text{or} \quad \{x : f(x) \ge c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R} \\ \text{or} \quad \{x : f(x) \le c\} \in \mathcal{F} \text{ for all } c \in \mathbb{R}. \end{cases}$

Example 10

 $f: (X, \mathcal{F}) \to \mathbb{R}^*, f \equiv \kappa$ a constant, possibly $\pm \infty$, is \mathcal{F} -measurable. This is simply because

$$\{x: f(x) > c\} = \begin{cases} X \text{ if } c < \kappa \\ \phi \text{ if } c \ge \kappa. \end{cases}$$

In all cases the resulting set is in \mathcal{F} .

The next result supplies us with many examples of measurable functions.

Example 11

Let $g : (\mathbb{R}, \mathcal{L}_F) \to \mathbb{R}$ be \mathcal{L}_F -measurable, $f : \mathbb{R} \to \mathbb{R}$ be continuous and $h : (X, \mathcal{F}) \to \mathbb{R}$ be \mathcal{F} -measurable. Then

- (i) f is Lebesque measurable,
- (ii) the composite $f \circ g$ is \mathcal{L}_F -measurable,
- (iii) the composite $f \circ h$ is \mathcal{F} -measurable.

Proof Note that f and g are finite valued so we need only look at the preimage of $(c, \infty) = \bigcup_{n>1} (c, n) \in \mathcal{U}$, the usual topology on \mathbb{R} .

(i) Since f is continuous we have that $f^{-1}((c,\infty)) \in \mathcal{U}$. But $\mathcal{U} \subseteq \mathcal{B} \subseteq \mathcal{L}_F$, and so

$$\{x: f(x) > c\} = f^{-1}((c, \infty)) \in \mathcal{L}_F.$$

(ii) Since $g : (\mathbb{R}, \mathcal{L}_F) \to \mathbb{R}$ is \mathcal{L}_F -measurable and $f^{-1}((c, \infty)) \in \mathcal{U} \subseteq \mathcal{B}$ then $g^{-1}(f^{-1}((c, \infty))) \in \mathcal{L}_F$. Hence $(f \circ g)^{-1}((c, \infty)) \in \mathcal{L}_F$ and so $f \circ g$ is \mathcal{L}_F -measurable.

(iii) Since $h : (X, \mathcal{F}) \to \mathbb{R}$ is \mathcal{F} -measurable and $f^{-1}((c, \infty)) \in \mathcal{U} \subseteq \mathcal{B}$ then $h^{-1}(f^{-1}((c, \infty))) \in \mathcal{L}_F$ and so $f \circ h$ is \mathcal{L}_F -measurable. **Theorem 3.4**

Let $f, g: (X, \mathcal{F}) \to \mathbb{R}^*$ be \mathcal{F} -measurable functions. Let $\alpha, \beta \in \mathbb{R}$. Then

- (i) $f + \alpha$ and αf are \mathcal{F} -measurable,
- (ii) f^2 is \mathcal{F} -measurable,
- (iii) $\{x \in X : f(x) > g(x)\} \in \mathcal{F},$
- (vi) $\{x \in X : f(x) = g(x)\} \in \mathcal{F},$
- (v) on the set of x for which it is defined, $\alpha f + \beta g$ is \mathcal{F} -measurable,
- (vi) fg is \mathcal{F} -measurable,
- (vii) on the set of x for which it is defined, f/g is \mathcal{F} -measurable,
- (viii) $\max(f, g)$ and $\min(f, g)$ are \mathcal{F} -measurable,
- (ix) |f| is \mathcal{F} -measurable.

Proof

(i) $\{x \in X : f(x) + \alpha > c\} = \{x \in X : f(x) > c - \alpha\} \in \mathcal{F}$ since f is \mathcal{F} -measurable. Hence $f + \alpha$ is \mathcal{F} -measurable.

If $\alpha = 0$ then $\{x \in X : \alpha f(x) > c\} = \phi$ if $c \ge 0$ and X if c < 0. In both cases the set is in \mathcal{F} .

If $\alpha > 0$ then $\{x \in X : \alpha f(x) > c\} = \{x \in X : f(x) > \frac{c}{\alpha}\} \in \mathcal{F}$ since f is \mathcal{F} -measurable.

If $\alpha < 0$ then $\{x \in X : \alpha f(x) > c\} = \{x \in X : f(x) < \frac{c}{\alpha}\} \in \mathcal{F}$ since f is \mathcal{F} -measurable.

In all cases $\{x \in X : \alpha f(x) > c\} \in \mathcal{F}$ and so αf is \mathcal{F} -measurable.

$$\{x \in X : f^2(x) > c\} = \begin{cases} X & \text{if } c < 0\\ \{x \in X : f(x) > \sqrt{c}\} \cup \{x \in X : f(x) < -\sqrt{c}\}\\ & \text{if } c \ge 0. \end{cases}$$

In all cases the resulting set is in \mathcal{F} .

(iii) Note that for any two numbers c, d we have c > d if, and only if, there exists a rational number r such that c > r > d. Hence

$$\{x \in X : f(x) > g(x)\} = \bigcup_{r \in \mathbb{Q}} \left(\{x \in X : f(x) > r\} \cap \{x \in X : r > g(x)\} \right).$$

All sets on the right are in \mathcal{F} as is the intersection and countable union. (iv) As in part (iii) we can show that $\{x \in X : g(x) > f(x)\} \in \mathcal{F}$. Then

$$\begin{aligned} \{ x &\in X : f(x) = g(x) \} \\ &= X \setminus (\{ x \in X : f(x) > g(x) \} \cup \{ x \in X : g(x) > f(x) \}) \end{aligned}$$

is an element of \mathcal{F} .

(v) By part (i) it suffices to prove that f + g is \mathcal{F} -measurable. Recall that $(+\infty) + (-\infty)$ is not defined so f + g is defined only on $X \setminus A$ where

$$A = \{x \in X : f(x) = \pm \infty, g(x) = \mp \infty\}$$

=
$$\{x \in X : f(x) = -g(x)\} \cap \{x \in X : f(x) = \pm \infty\}$$

$$\in \mathcal{F}$$

by Example 10 and part (iv). Then

$$\{x \in X \setminus A : f(x) + g(x) > c\} = (X \setminus A) \cap \{x \in X : f(x) > c - g(x)\}$$

which is in \mathcal{F} by (iii).

(vi) Continue with the notation of part (v). Then on $X \setminus A$ we can meaningfully write

$$fg = \frac{(f+g)^2 - f^2 - g^2}{2},$$

which is therefore \mathcal{F} -measurable, on $X \setminus A$, by parts (ii) and (v). On A we have either $f(x) = +\infty$ and $g(x) = -\infty$ or $f(x) = -\infty, g(x) = +\infty$. In both cases fg is defined with value $-\infty$. Thus $\{x \in A : fg(x) > c\} = \phi \in \mathcal{F}$ for all $c \in \mathbb{R}$. Hence fg is \mathcal{F} -measurable, on X.

(vii) By part (vi) it suffices to prove that 1/g is \mathcal{F} -measurable. This is only defined on $X \setminus B$ where

$$B = \{x \in X : g(x) = 0\} \in \mathcal{F}$$

by Example 10. First assume c > 0 then

$$\begin{cases} x \in X \setminus B : \frac{1}{g(x)} > c \end{cases} = \begin{cases} x \in X \setminus B : 0 \le g(x) < \frac{1}{c} \end{cases}$$
$$= \begin{cases} x \in X : 0 < g(x) < \frac{1}{c} \end{cases}$$
$$= \begin{cases} x \in X : g(x) < \frac{1}{c} \end{cases} \setminus \{x \in X : g(x) \le 0\}$$

which is in \mathcal{F} since g is \mathcal{F} -measurable. If $c \leq 0$ then

$$\left\{ x \in X \setminus B : \frac{1}{g(x)} > c \right\} = \left\{ x \in X \setminus B : 0 \le g(x) \right\}$$
$$\cup \left\{ x \in X \setminus B : g(x) < \frac{1}{c} \right\}$$
$$= \left\{ x \in X : 0 < g(x) \right\} \cup \left\{ x \in X : g(x) < \frac{1}{c} \right\}$$

which is in \mathcal{F} .

(viii) For the max and min we need do no more than observe that

$$\{x : \max(f(x), g(x)) > c\} = \{x : f(x) > c\} \cup \{x : g(x) > c\}$$

$$\{x : \min(f(x), g(x)) > c\} = \{x : f(x) > c\} \cap \{x : g(x) > c\}.$$

(ix) Let $f^+ = \max(f, 0)$ and $f^- = -\min(f, 0)$. (The -ve sign is taken so that $f^- \ge 0$.) Then f^+ and f^- are \mathcal{F} -measurable by (viii). And so $|f| = f^+ + f^-$ is \mathcal{F} -measurable by part (v).

3.1 Sequences of Functions

Let $\{x_n\} \subseteq \mathbb{R}^*$ be a sequence of extended real numbers. We can give an extended definition of limit in the following.

Definition

 $\lim_{n\to\infty} x_n = \ell$ with ℓ finite if, and only if, $\forall \varepsilon > 0 \ \exists N : |x_n - \ell| < \varepsilon$ $\forall n \ge N$.

 $\lim_{n\to\infty} x_n = +\infty$ if, and only if, $\forall K > 0 \ \exists N : x_n > K \ \forall n \ge N$.

 $\lim_{n\to\infty} x_n = -\infty$ if, and only if, $\forall K < 0 \ \exists N : x_n < K \ \forall n \ge N$.

Recall the definition of $\sup_{n\geq 1} x_n$ can be given as $\alpha = \sup_{n\geq 1} x_n$ if $\alpha \geq x_n$ for all n and given any $\varepsilon > 0$ there exists $N \geq 1$ such that $\alpha - \varepsilon < x_N \leq \alpha$. Of course, implicit in this definition is that $\sup_{n\geq 1} x_n$ is finite. We can extend to when $\sup_{n\geq 1} x_n = +\infty$ or $-\infty$. Of course, in the first case we do not have to check that $+\infty$ is an upper bound since that is necessarily true and in the second case the demand that $-\infty$ means that $x_n = -\infty$ for all n.

Definition

 $\sup_{n\geq 1} x_n = +\infty$ if, and only if, $\forall K > 0 \; \exists N : x_N > K$. $\sup_{n\geq 1} x_n = -\infty$ if, and only if, $\forall n \geq 1, x_n = -\infty$. $\inf_{n\geq 1} x_n = +\infty$ if, and only if, $\forall n \geq 1, x_n = +\infty$. $\inf_{n>1} x_n = -\infty$ if, and only if $\forall K < 0 \; \exists N : x_N < K$. Of course a sequence need not have a limit. But we can define forms of limit that exist for all sequences.

Definition

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{r \ge n} x_r \right).$$
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{r \ge n} x_r \right).$$

We can see that these always exist in the following way. We note that $\{x_r\}_{r\geq n+1} \subseteq \{x_r\}_{r\geq n}$ and so

$$\sup_{r \ge n+1} x_r \le \sup_{r \ge n} x_r.$$

Thus $\{\sup_{r\geq n} x_r\}_{n\geq 1}$ is a decreasing sequence and because of our extended definition of limit such a series converges. Either the sequence is bounded below when it converges to a finite value, namely the infimum of the sequence, or it is not bounded below when it converges to $-\infty$ by the extended definition above, which again is the infimum of the sequence. So in both cases we find that

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 1} \left(\sup_{r \ge n} x_r \right).$$

In the same way we have that $\{\inf_{r\geq n} x_r\}_{n\geq 1}$ is an increasing sequence. This leads to

$$\liminf_{n \to \infty} x_n = \sup_{n \ge 1} \left(\inf_{r \ge n} x_r \right).$$

We then have the important result

Theorem 3.5

The limit $\lim_{n\to\infty} x_n$ exists if, and only if, $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$. The common value (even if $+\infty$ or $-\infty$) is the value of the limit.

***Proof** (Not given in lecture.)

 (\Rightarrow) Assume $\lim_{n\to\infty} x_n$ exists and is finite, ℓ say. Then

$$\forall \varepsilon > 0 \; \exists N : |x_n - \ell| < \varepsilon \qquad \forall n \ge N$$

and so $\ell - \varepsilon < x_n < \ell + \varepsilon$ for such n. That is, $\ell - \varepsilon$ is a lower bound for $\{x_r\}_{r \ge n}$ for any $n \ge N$ and thus $\ell - \varepsilon \le \inf\{x_r\}_{r \ge n} = \inf_{r \ge n} x_r$. But also, $\inf_{r \ge n} x_r \le x_n < \ell + \varepsilon$. So

$$\ell - \varepsilon \le \inf_{r \ge n} x_r < \ell + \varepsilon \quad \forall n \ge N.$$

(Note how a strict inequality has changed to a \leq). This shows that the definition of limit is satisfied for the sequence $\{\inf_{r\geq n} x_r\}_{n\geq 1}$ and so $\lim_{n\to\infty} (\inf_{r\geq n} x_r)$ $= \ell$. Similarly

$$\ell - \varepsilon < \sup_{r \ge n} x_r \le \ell + \varepsilon \qquad \forall n \ge N$$

leading to $\lim_{n\to\infty} (\sup_{r>n} x_r) = \ell$.

Assume $\lim_{n\to\infty} x_n$ exists and is $+\infty$. Then

$$\forall K > 0 \; \exists N : x_n > K \qquad \forall n \ge N.$$

In particular $K \leq \inf_{r \geq n} x_r$ for such n. (Obviously $\sup_{r \geq n} x_r = +\infty$ and so $\lim_{n \to \infty} (\sup_{r \geq n} x_r) = +\infty$) But now we have seen that the extended definition of limit is satisfied for the sequence $\{\inf_{r \geq n} x_r\}_n$ and so $\lim_{n \to \infty} (\inf_{r \geq n} x_r) = +\infty$.

The same proof holds when $\lim_{n\to\infty} x_n$ exists and is $-\infty$.

(\Leftarrow) Assume now that $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$ with a finite limit, ℓ , say. Then $\liminf_{n\to\infty} x_n = \ell$ means that

$$\forall \varepsilon > 0 \; \exists N_1 : \left| \inf_{r \ge n} x_r - \ell \right| < \varepsilon \; \forall n \ge N_1.$$

In particular

$$x_n \ge \inf_{r \ge n} x_r > \ell - \varepsilon \tag{13}$$

for such n.

Similarly $\limsup_{n\to\infty} x_n = \ell$ means that

$$\forall \varepsilon > 0 \; \exists N_2 : \left| \sup_{r \ge n} x_r - \ell \right| < \varepsilon \; \forall n \ge N_2.$$

In particular

$$x_n \le \sup_{r \ge n} x_r < \ell + \varepsilon \tag{14}$$

for such *n*. Let $N = \max(N_1, N_2)$ then for all $n \ge N$ we can combine (13) and (14) to get $\ell - \varepsilon < x_n < \ell + \varepsilon$ and so $\lim_{n \to \infty} x_n = \ell$.

Assume now that $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = +\infty$. Then

$$\forall K > 0 \; \exists N : \inf_{r \ge n} x_r > K \; \forall n \ge N$$

and in particular $x_n \ge \inf_{r\ge n} x_r > K \ \forall n \ge N$ and so $\lim_{n\to\infty} x_n = +\infty$.

A similar proof holds when the common limit is $-\infty$.

Note For any sequence $\{x_n\} \subseteq \mathbb{R}^*$ we have $\sup_{n\geq 1} x_n = -\inf_{n\geq 1} (-x_n)$ and $\sup_{n\geq 1} x_n > c$ if, and only if, there exists $i: x_i > c$.

(*Proof is left to student. For the second result note first that $\sup_{n\geq 1} x_n = +\infty$ iff $\forall K > 0 \ \exists N : x_N > K$. Choose K = c to get the result. Otherwise $\sup_{n\geq 1} x_n = \ell$ a finite value when we know that given any $\varepsilon > 0$ there exists $N \geq 1$ such that $\ell - \varepsilon < x_N \leq \ell$. Simply choose ε so that $\ell - \varepsilon \geq c$, perhaps $\varepsilon = (\ell - c)/2$, to get the result.).

Let $f_n : (X, \mathcal{F}) \to \mathbb{R}^*$ be a sequence of \mathcal{F} -measurable functions and define $\sup_{n \ge 1} f_n$ and $\inf_{n \ge 1} f_n$ pointwise, that is, for all $x \in X$ define $(\sup_{n \ge 1} f_n)(x)$ $= \sup_{n \ge 1} f_n(x)$ and $(\inf_{n \ge 1} f_n)(x) = \inf_{n \ge 1} f_n(x)$.

Theorem 3.6

i) The functions $\sup_{n\geq 1} f_n$ and $\inf_{n\geq 1} f_n$ are \mathcal{F} -measurable functions.

ii) The functions $\liminf_{n\to\infty} f_n$ and $\limsup_{n\to\infty} f_n$ are \mathcal{F} -measurable functions.

iii) The set of $x \in X$ for which $\lim_{n\to\infty} f_n(x)$ exists is a measurable set.

iv) On the set of x for which $\lim_{n\to\infty} f_n(x)$ exists the limit function is \mathcal{F} -measurable.

Proof

i) Let $c \in \mathbb{R}$. From the note above we have

$$\left\{ x: \sup_{n \ge 1} f_n(x) > c \right\} = \left\{ x: \text{ there exists } i \text{ for which } f_i(x) > c \right\}$$
$$= \bigcup_{i \ge 1} \{ x: f_i(x) > c \} \in \mathcal{F}$$

since each f_i is \mathcal{F} -measurable and \mathcal{F} is closed under countable unions. Hence $\sup_{n>1} f_n$ is \mathcal{F} -measurable.

For the infimum we use the note again to deduce that $\inf_{n\geq 1} f_n = -\sup_{n\geq 1} (-f_n)$ is \mathcal{F} -measurable.

ii) As observed above we have

$$\liminf_{n \to \infty} f_n = \sup_{n \ge 1} \left(\inf_{r \ge n} f_r \right) \quad \text{and} \quad \limsup_{n \to \infty} f_n = \inf_{n \ge 1} \left(\sup_{r \ge n} f_r \right).$$

So part (i) gives the result for $\liminf_{n \to \infty} f_n$ and $\limsup_{n \to \infty} f_n$.

iii) By Theorem 3.5 we have

$$\left\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\right\} = \left\{x \in X : \liminf_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)\right\}.$$

So our set is that of points at which two \mathcal{F} -measurable functions are equal. By Theorem 3.4(vi) such a set is an element of \mathcal{F} . iv) Let $A = \{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\}$ then

$$\begin{cases} x \in A : \lim_{n \to \infty} f_n(x) > c \\ \\ = \begin{cases} x \in A : \liminf_{n \to \infty} f_n(x) > c \\ \\ = A \cap \left\{ x \in X : \liminf_{n \to \infty} f_n(x) > c \right\} & \text{since } \liminf_{n \to \infty} f_n \text{ on } A, \\ \\ \\ = A \cap \left\{ x \in X : \liminf_{n \to \infty} f_n(x) > c \right\} & \text{since } \liminf_{n \to \infty} f_n \text{ defined on all of } X, \\ \\ \\ \in \mathcal{F}, \end{cases}$$

using parts (ii) and (iii).

Note This limit result for measurable functions does not necessarily hold for continuous functions even though continuous functions are measurable. For example, $f_n(x) = x^n$ are continuous on [0, 1] yet $\inf f_n(x) = 0$ for $0 \le x < 1$ and 1 when x = 1, and so not continuous.