2.5 Outer Measure and Measurable sets.

Note The results of this section concern any given outer measure λ .

If an outer measure λ on a set X were a measure then it would be additive. In particular, given any two sets $A, B \subseteq X$ we have that $A \cap B$ and $A \cap B^c$ are disjoint with $(A \cap B) \cup (A \cap B^c) = A$ and so we would have

$$\lambda(A) = \lambda(A \cap B) + \lambda(A \cap B^c).$$

We will see later that this does not necessarily hold for all A and B but it does lead to the following definition.

Definition Let λ be an outer measure on a set X. Then $E \subseteq X$ is said to be *measurable with respect to* λ (or λ -measurable) if

$$\lambda(A) = \lambda(A \cap E) + \lambda(A \cap E^c) \quad \text{for all} \quad A \subseteq X.$$
(7)

(This can be read as saying that we take each and every possible "test set", A, look at the measures of the parts of A that fall within and without E, and check whether these measures add up to that of A.)

Since λ is subadditive we have $\lambda(A) \leq \lambda(A \cap E) + \lambda(A \cap E^c)$ so, in checking measurability, we need only verify that

$$\lambda(A) \ge \lambda(A \cap E) + \lambda(A \cap E^c) \quad \text{for all} \quad A \subseteq X.$$
(8)

Let $\mathcal{M} = \mathcal{M}(\lambda)$ denote the collection of λ -measurable sets.

Theorem 2.6

 \mathcal{M} is a field.

Proof

Trivially ϕ and X are in \mathcal{M} .

Take any $E_1, E_2 \in \mathcal{M}$ and any test set $A \subseteq X$. Then

$$\lambda(A) = \lambda(A \cap E_1) + \lambda(A \cap E_1^c).$$

Now apply the definition of measurability for E_2 with the test set $A \cap E_1^c$ to get

$$\lambda(A \cap E_1^c) = \lambda((A \cap E_1^c) \cap E_2) + \lambda((A \cap E_1^c) \cap E_2^c)$$

= $\lambda(A \cap E_1^c \cap E_2) + \lambda(A \cap (E_1 \cup E_2)^c).$

Combining

$$\lambda(A) = \lambda(A \cap E_1) + \lambda(A \cap E_1^c \cap E_2) + \lambda(A \cap (E_1 \cup E_2)^c).$$
(9)

We hope to use the subadditivity of λ on the first two term on the right hand side of (9). For the sets there we have

$$(A \cap E_1) \cup (A \cap E_1^c \cap E_2) = A \cap (E_1 \cup (E_1^c \cap E_2)) = A \cap ((E_1 \cup E_1^c) \cap (E_1 \cup E_2)) = A \cap (X \cap (E_1 \cup E_2)) = A \cap (E_1 \cup E_2).$$

 So

$$\lambda(A \cap E_1) + \lambda(A \cap E_1^c \cap E_2) \ge \lambda(A \cap (E_1 \cup E_2)).$$

Substituting in (9) gives

$$\lambda(A) \ge \lambda(A \cap (E_1 \cup E_2)) + \lambda(A \cap (E_1 \cup E_2)^c).$$

So we have verified (8) for $E_1 \cup E_2$, that is, $E_1 \cup E_2 \in \mathcal{M}$.

Observe that the definition of λ -measurable sets is symmetric in that $E \in \mathcal{M}$ if, and only if, $E^c \in \mathcal{M}$. Thus

$$E_1 \setminus E_2 = E_1 \cap E_2^c = (E_1^c \cup E_2)^c \in \mathcal{M}.$$

Hence \mathcal{M} is a field.

Proposition 2.7 If $G, F \in \mathcal{M}(\lambda)$ are disjoint then

$$\lambda(A \cap (G \cup F)) = \lambda(A \cap G) + \lambda(A \cap F)$$

for all $A \subseteq X$. **Proof**

Let $A \subseteq X$ be given. Apply the definition of λ -measurability to G with the test set $A \cap (G \cup F)$. Then

$$\lambda(A \cap (G \cup F)) = \lambda((A \cap (G \cup F)) \cap G) + \lambda((A \cap (G \cup F)) \cap G^c).$$
(10)

Yet

$$(G \cup F) \cap G = (G \cap G) \cup (F \cap G) = G \cup (F \cap G) = G$$

since $F \cap G \subseteq G$. Also

$$(G \cup F) \cap G^c = (G \cap G^c) \cup (F \cap G^c)$$
$$= \phi \cup F = F,$$

because F and G disjoint means $F \subseteq G^c$ and so $F \cap G^c = F$. Thus (9) becomes

$$\lambda(A \cap (G \cup F)) = \lambda(A \cap G) + \lambda(A \cap F).$$

Using induction it is possible to prove the following.

Corollary 2.8 For all $n \ge 1$ if $\{F_i\}_{1\le i\le n}$ is a finite collection of disjoint sets from $\mathcal{M}(\lambda)$ then

$$\lambda\left(A\cap\bigcup_{i=1}^{n}F_{i}\right)=\sum_{i=1}^{n}\lambda\left(A\cap F_{i}\right) \text{ for all } A\subseteq X.$$

Proof Left to students.

Corollary 2.9 If $\{F_i\}_{i\geq 1}$ is a countable collection of disjoint sets from $\mathcal{M}(\lambda)$ then

$$\lambda\left(A\cap\bigcup_{i=1}^{\infty}F_i\right)=\sum_{i=1}^{\infty}\lambda\left(A\cap F_i\right) \text{ for all } A\subseteq X.$$

Proof

For any $n \ge 1$ we have $A \cap \bigcup_{i=1}^{\infty} F_i \supseteq A \cap \bigcup_{i=1}^n F_i$ and so by monotonicity we have

$$\lambda \left(A \cap \bigcup_{i=1}^{\infty} F_i \right) \geq \lambda \left(A \cap \bigcup_{i=1}^{n} F_i \right)$$
$$= \sum_{i=1}^{n} \lambda \left(A \cap F_i \right)$$

by Corollary 2.8. Let $n \to \infty$ to get

$$\lambda\left(A\cap\bigcup_{i=1}^{\infty}F_i\right)\geq\sum_{i=1}^{\infty}\lambda\left(A\cap F_i\right).$$

The reverse inequality follows from subadditivity.

Theorem 2.10

 $\mathcal{M}(\lambda)$ is a σ -field and λ restricted to $\mathcal{M}(\lambda)$ is a measure.

Proof

Let $\{E_i\}_{i\geq 1}$ be a countable collection from \mathcal{M} . They might not be disjoint so define $F_1 = E_1$ and

$$F_i = E_i \setminus \bigcup_{j=1}^{i-1} E_j$$

for all i > 1. The F_i are disjoint and $F_i \in \mathcal{M}$ since \mathcal{M} is a field. Let $G_m = \bigcup_{j=1}^m F_j$ and $G = \bigcup_{j=1}^\infty F_j = \bigcup_{i=1}^\infty E_i$. Then for any $A \subseteq X$ and for any $n \ge 1$ we have

$$\lambda(A) = \lambda(A \cap G_n) + \lambda(A \cap G_n^c) \quad \text{since } G_n \in \mathcal{M}$$
$$= \sum_{\substack{i=1\\n}}^n \lambda(A \cap F_i) + \lambda(A \cap G_n^c) \quad \text{by Corollary 2.8}$$
$$\geq \sum_{i=1}^n \lambda(A \cap F_i) + \lambda(A \cap G^c) \quad \text{since } G^c \subseteq G_n^c.$$

True for all n means that

True for all $A \subseteq X$ means that $G \in \mathcal{M}(\lambda)$.

Choosing A = X in Corollary 2.9 shows that λ is σ -additive on $\mathcal{M}(\lambda)$. Hence λ is a measure on $\mathcal{M}(\lambda)$.

Example [†] With the Lebesgue-Stieltjes outer measure μ_F^* of example 8 we can now form the σ -field $\mathcal{M}(\mu_F^*)$. This is known as the collection of *Lebesgue-Stieltjes measurable sets* and is denoted by \mathcal{L}_F . If F(x) = x, it is simply known as the collection of *Lebesgue measurable sets* and is denoted by \mathcal{L} .

We now specialise to those outer measures constructed, as in (4), from measures defined in a ring.

Theorem 2.11 Let \mathcal{R} be a ring of sets in X such that $X = \bigcup_{i=1}^{\infty} E_i$ for some $E_i \in \mathcal{R}$. Let μ be a measure on \mathcal{R} and let μ^* be the outer measure on X constructed from μ as in (4). Then

- (i) the elements of \mathcal{R} are μ^* -measurable sets,
- (ii) $\mu^* = \mu$ on \mathcal{R} .

Proof

(i) Let $E \in \mathcal{R}$ and a test set $A \subseteq X$ be given. If $\mu^*(A) = +\infty$ then (7) is trivially satisfied so assume that $\mu^*(A) < +\infty$.

Let $\varepsilon > 0$ be given. By the definition (4) there exists a countable collection $\{E_i\}_{i\geq 1} \subseteq \mathcal{R}$ such that $A \subseteq \bigcup_{i>1} E_i$ and

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu(E_i) < \mu^*(A) + \varepsilon.$$

Yet μ is a measure on \mathcal{R} and $E_i, E \in \mathcal{R}$ so

$$\mu(E_i) = \mu(E_i \cap E) + \mu(E_i \cap E^c).$$

Combining we see

$$\mu^*(A) + \varepsilon > \sum_{i=1}^{\infty} \left(\mu(E_i \cap E) + \mu(E_i \cap E^c) \right)$$

$$\geq \mu^*(A \cap E) + \mu^*(A \cap E^c),$$

since $\{E_i \cap E\}_{i \ge 1}$ and $\{E_i \cap E^c\}_{i \ge 1}$ are covers for $A \cap E$ and $A \cap E^c$ respectively. True for all $\varepsilon > 0$ means that (7) is satisfied and so $E \in \mathcal{M}$ and thus $\mathcal{R} \subseteq \mathcal{M}$.

(ii) Let $E \in \mathcal{R}$ be given. Then since E is a cover from \mathcal{R} for E we have that

$$\mu^*(E) = \inf_{all \ covers} \sum \mu(E_i) \le \mu(E).$$

Take any other cover $\{E_i\}_{i\geq 1}$ of E. As in Theorem 2.10 replace the E_i by disjoint sets $F_i \subseteq E_i, F_i \in \mathcal{R}$ and where $\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} E_i$. Then

$$\mu(E) = \mu \left(E \cap \bigcup_{i=1}^{\infty} F_i \right) \qquad \text{since } E \subseteq \bigcup_{i=1}^{\infty} F_i,$$
$$= \mu \left(\bigcup_{i=1}^{\infty} (E \cap F_i) \right)$$
$$= \sum_{i=1}^{\infty} \mu \left(E \cap F_i \right) \qquad \text{since } \mu \text{ is additive on}$$
$$\leq \sum_{i=1}^{\infty} \mu \left(F_i \right) \leq \sum_{i=1}^{\infty} \mu \left(E_i \right)$$

 $\mathcal{R},$

since $E \cap F_i \subseteq F_i \subseteq E_i$ and μ is monotonic on \mathcal{R} . So $\mu(E)$ is a lower bound for the sums for which $\mu^*(E)$ is the greatest lower bound and thus $\mu(E) \leq \mu^*(E)$.

Hence $\mu(E) = \mu^*(E)$.

We now see that it is reasonable to say that μ^* extends μ .

Further, let \mathcal{A} be a collection of subsets of X.

Definition We say that the extended real-valued function $\phi : \mathcal{A} \to \mathbb{R}^*$ is σ -finite if for all $A \in \mathcal{A}$ there exists a countable collection $\{A_n\}_{n\geq 1} \subseteq \mathcal{A}$ such that $A \subseteq \bigcup_{n>1} A_n$ and $|\phi(A_n)| < \infty$ for all $n \geq 1$.

Then it can be shown that

Theorem 2.12

If, in addition to the conditions of Theorem 2.11, μ is σ -finite on \mathcal{R} then the extension to \mathcal{M} is unique and is also σ -finite.

Proof not given here.

Example 8[†] Recall that μ_F was first defined on \mathcal{P} and then extended to \mathcal{E} in Corollary 2.3. In the last example the σ -field $M(\mu_F^*)$, known as \mathcal{L}_F , was constructed. Now Theorem 2.11 implies that $\mathcal{E} \subseteq \mathcal{L}_F$ and $\mu_F^* = \mu_F$ on \mathcal{E} . So it is reasonable to write μ_F^* simply as μ_F on \mathcal{L}_F , called the *Lebesgue-Stieltjes* measure. If F(x) = x, we write μ_F simply as μ , called the *Lebesgue measure* on \mathbb{R} .

Note[†] $\mathcal{L}_F \supseteq \mathcal{E} \supseteq \mathcal{P}$ so \mathcal{L}_F is a σ -field containing \mathcal{P} . But \mathcal{B} , the Borel sets of \mathbb{R} , is **the** smallest σ -field containing \mathcal{P} . Hence $\mathcal{L}_F \supseteq \mathcal{B}$, true for **all** distribution functions F.