
2.5 Outer Measure and Measurable sets.

Note The results of this section concern any given outer measure λ.

If an outer measure λ on a set X were a measure then it would be additive.
In particular, given any two sets A, B ⊆ X we have that A ∩ B and A ∩ Bc

are disjoint with (A ∩B) ∪ (A ∩Bc) = A and so we would have

λ(A) = λ(A ∩B) + λ(A ∩Bc).

We will see later that this does not necessarily hold for all A and B but
it does lead to the following definition.

Definition Let λ be an outer measure on a set X. Then E ⊆ X is said to
be measurable with respect to λ (or λ-measurable) if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) for all A ⊆ X. (7)

(This can be read as saying that we take each and every possible “test
set”, A, look at the measures of the parts of A that fall within and without
E, and check whether these measures add up to that of A.)

Since λ is subadditive we have λ(A) ≤ λ(A∩E)+λ(A∩Ec) so, in checking
measurability, we need only verify that

λ(A) ≥ λ(A ∩ E) + λ(A ∩ Ec) for all A ⊆ X. (8)

Let M = M(λ) denote the collection of λ-measurable sets.

Theorem 2.6

M is a field.

Proof
Trivially φ and X are in M.

Take any E1, E2 ∈M and any test set A ⊆ X. Then

λ(A) = λ(A ∩ E1) + λ(A ∩ Ec
1).

Now apply the definition of measurability for E2 with the test set A ∩Ec
1 to

get

λ(A ∩ Ec
1) = λ((A ∩ Ec

1) ∩ E2) + λ((A ∩ Ec
1) ∩ Ec

2)

= λ(A ∩ Ec
1 ∩ E2) + λ(A ∩ (E1 ∪ E2)

c).

Combining

λ(A) = λ(A ∩ E1) + λ(A ∩ Ec
1 ∩ E2) + λ(A ∩ (E1 ∪ E2)

c). (9)
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We hope to use the subadditivity of λ on the first two term on the right hand
side of (9). For the sets there we have

(A ∩ E1) ∪ (A ∩ Ec
1 ∩ E2) = A ∩ (E1 ∪ (Ec

1 ∩ E2))

= A ∩ ((E1 ∪ Ec
1) ∩ (E1 ∪ E2))

= A ∩ (X ∩ (E1 ∪ E2))

= A ∩ (E1 ∪ E2).

So

λ(A ∩ E1) + λ(A ∩ Ec
1 ∩ E2) ≥ λ(A ∩ (E1 ∪ E2)).

Substituting in (9) gives

λ(A) ≥ λ(A ∩ (E1 ∪ E2)) + λ(A ∩ (E1 ∪ E2)
c).

So we have verified (8) for E1 ∪ E2, that is, E1 ∪ E2 ∈M.

Observe that the definition of λ-measurable sets is symmetric in that
E ∈M if, and only if, Ec ∈M. Thus

E1 \ E2 = E1 ∩ Ec
2 = (Ec

1 ∪ E2)
c ∈M.

Hence M is a field. ¥
Proposition 2.7 If G, F ∈M(λ) are disjoint then

λ(A ∩ (G ∪ F )) = λ(A ∩G) + λ(A ∩ F )

for all A ⊆ X.
Proof

Let A ⊆ X be given. Apply the definition of λ-measurability to G with
the test set A ∩ (G ∪ F ). Then

λ(A ∩ (G ∪ F )) = λ((A ∩ (G ∪ F )) ∩G)

+λ((A ∩ (G ∪ F )) ∩Gc). (10)

Yet

(G ∪ F ) ∩G = (G ∩G) ∪ (F ∩G)

= G ∪ (F ∩G) = G
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since F ∩G ⊆ G. Also

(G ∪ F ) ∩Gc = (G ∩Gc) ∪ (F ∩Gc)

= φ ∪ F = F,

because F and G disjoint means F ⊆ Gc and so F ∩ Gc = F . Thus (9)
becomes

λ(A ∩ (G ∪ F )) = λ(A ∩G) + λ(A ∩ F ).

¥
Using induction it is possible to prove the following.

Corollary 2.8 For all n ≥ 1 if {Fi}1≤i≤n is a finite collection of disjoint
sets from M(λ) then

λ

(
A ∩

n⋃
i=1

Fi

)
=

n∑
i=1

λ (A ∩ Fi) for all A ⊆ X.

Proof Left to students. ¥
Corollary 2.9 If {Fi}i≥1 is a countable collection of disjoint sets from M(λ)
then

λ

(
A ∩

∞⋃
i=1

Fi

)
=

∞∑
i=1

λ (A ∩ Fi) for all A ⊆ X.

Proof
For any n ≥ 1 we have A∩⋃∞

i=1 Fi ⊇ A∩⋃n
i=1 Fi and so by monotonicity

we have

λ

(
A ∩

∞⋃
i=1

Fi

)
≥ λ

(
A ∩

n⋃
i=1

Fi

)

=
n∑

i=1

λ (A ∩ Fi)

by Corollary 2.8. Let n →∞ to get

λ

(
A ∩

∞⋃
i=1

Fi

)
≥

∞∑
i=1

λ (A ∩ Fi) .

The reverse inequality follows from subadditivity. ¥

3



Theorem 2.10

M(λ) is a σ-field and λ restricted to M(λ) is a measure.

Proof
Let {Ei}i≥1 be a countable collection fromM. They might not be disjoint

so define F1 = E1 and

Fi = Ei \
i−1⋃
j=1

Ej

for all i > 1. The Fi are disjoint and Fi ∈ M since M is a field. Let
Gm =

⋃m
j=1 Fj and G =

⋃∞
j=1 Fj =

⋃∞
i=1 Ei. Then for any A ⊆ X and for

any n ≥ 1 we have

λ(A) = λ(A ∩Gn) + λ(A ∩Gc
n) since Gn ∈M

=
n∑

i=1

λ(A ∩ Fi) + λ(A ∩Gc
n) by Corollary 2.8

≥
n∑

i=1

λ(A ∩ Fi) + λ(A ∩Gc) since Gc ⊆ Gc
n.

True for all n means that

λ(A) ≥
∞∑
i=1

λ(A ∩ Fi) + λ(A ∩Gc)

= λ

(
A ∩

∞⋃
i=1

Fi

)
+ λ(A ∩Gc)

by Corollary 2.8, since the Fi are disjoint,

= λ (A ∩G) + λ(A ∩Gc).

True for all A ⊆ X means that G ∈M(λ).
Choosing A = X in Corollary 2.9 shows that λ is σ-additive on M(λ).

Hence λ is a measure on M(λ). ¥
Example † With the Lebesgue-Stieltjes outer measure µ∗F of example 8 we
can now form the σ-fieldM(µ∗F ). This is known as the collection of Lebesgue-
Stieltjes measurable sets and is denoted by LF . If F (x) = x, it is simply
known as the collection of Lebesgue measurable sets and is denoted by L.

We now specialise to those outer measures constructed, as in (4), from
measures defined in a ring.
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Theorem 2.11 Let R be a ring of sets in X such that X =
⋃∞

i=1 Ei for
some Ei ∈ R. Let µ be a measure on R and let µ∗ be the outer measure on
X constructed from µ as in (4). Then

(i) the elements of R are µ∗-measurable sets,
(ii) µ∗ = µ on R.

Proof
(i) Let E ∈ R and a test set A ⊆ X be given. If µ∗(A) = +∞ then (7)

is trivially satisfied so assume that µ∗(A) < +∞.
Let ε > 0 be given. By the definition (4) there exists a countable collection

{Ei}i≥1 ⊆ R such that A ⊆ ⋃
i≥1 Ei and

µ∗(A) ≤
∞∑
i=1

µ(Ei) < µ∗(A) + ε.

Yet µ is a measure on R and Ei, E ∈ R so

µ(Ei) = µ(Ei ∩ E) + µ(Ei ∩ Ec).

Combining we see

µ∗(A) + ε >

∞∑
i=1

(µ(Ei ∩ E) + µ(Ei ∩ Ec))

≥ µ∗(A ∩ E) + µ∗(A ∩ Ec),

since {Ei ∩ E}i≥1 and {Ei ∩ Ec}i≥1 are covers for A ∩E and A ∩Ec respec-
tively. True for all ε > 0 means that (7) is satisfied and so E ∈M and thus
R ⊆M.

(ii) Let E ∈ R be given. Then since E is a cover from R for E we have
that

µ∗(E) = inf
all covers

∑
µ(Ei) ≤ µ(E).

Take any other cover {Ei}i≥1 of E. As in Theorem 2.10 replace the Ei

by disjoint sets Fi ⊆ Ei, Fi ∈ R and where
⋃∞

i=1 Fi =
⋃∞

i=1 Ei. Then
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µ(E) = µ

(
E ∩

∞⋃
i=1

Fi

)
since E ⊆

∞⋃
i=1

Fi,

= µ

( ∞⋃
i=1

(E ∩ Fi)

)

=
∞∑
i=1

µ (E ∩ Fi) since µ is additive on R,

≤
∞∑
i=1

µ (Fi) ≤
∞∑
i=1

µ (Ei)

since E ∩ Fi ⊆ Fi ⊆ Ei and µ is monotonic on R. So µ(E) is a lower
bound for the sums for which µ∗(E) is the greatest lower bound and thus
µ(E) ≤ µ∗(E).

Hence µ(E) = µ∗(E). ¥
We now see that it is reasonable to say that µ∗ extends µ.

Further, let A be a collection of subsets of X.

Definition We say that the extended real-valued function φ : A → R∗ is
σ-finite if for all A ∈ A there exists a countable collection {An}n≥1 ⊆ A such
that A ⊆ ⋃

n≥1 An and |φ(An)| < ∞ for all n ≥ 1.

Then it can be shown that

Theorem 2.12
If, in addition to the conditions of Theorem 2.11, µ is σ-finite on R then

the extension to M is unique and is also σ-finite.

Proof not given here. ¥
Example 8† Recall that µF was first defined on P and then extended to E
in Corollary 2.3. In the last example the σ-field M (µ∗F ), known as LF , was
constructed. Now Theorem 2.11 implies that E ⊆ LF and µ∗F = µF on E . So
it is reasonable to write µ∗F simply as µF on LF , called the Lebesgue-Stieltjes
measure. If F (x) = x, we write µF simply as µ, called the Lebesgue measure
on R.

Note† LF ⊇ E ⊇ P so LF is a σ-field containing P . But B, the Borel
sets of R, is the smallest σ-field containing P . Hence LF ⊇ B, true for all
distribution functions F .
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