2.5 Outer Measure and Measurable sets.

Note The results of this section concern any given outer measure .

If an outer measure \ on a set X were a measure then it would be additive.
In particular, given any two sets A, B C X we have that AN B and AN B¢
are disjoint with (AN B) U (AN B¢) = A and so we would have

AMA) = AANB)+ A(AN B°).
We will see later that this does not necessarily hold for all A and B but
it does lead to the following definition.

Definition Let A be an outer measure on a set X. Then £ C X is said to
be measurable with respect to A (or A-measurable) if

AMA)=ANANE)+ANANES forall ACX. (7)

(This can be read as saying that we take each and every possible “test
set”, A, look at the measures of the parts of A that fall within and without
E, and check whether these measures add up to that of A.)

Since A is subadditive we have A\(A) < AM(ANE)+A(ANE®) so, in checking
measurability, we need only verify that

MA) > AMANE)+AMANES)  forall ACX. (8)
Let M = M()) denote the collection of A-measurable sets.
Theorem 2.6
M is a field.

Proof
Trivially ¢ and X are in M.

Take any F1, F5 € M and any test set A C X. Then

AMA) = ANANE) + AANEY).

Now apply the definition of measurability for Ey with the test set AN EY to
get

MANEY) = MANEY) N Ey) + A(ANEY) N EY)
= MANE{NEy) + AAN (£ U EY)).
Combining

MA) =MANE)+MANE{N Ey) + MAN(Ey U Ey)°). 9)
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We hope to use the subadditivity of A on the first two term on the right hand
side of (9). For the sets there we have

(ANE) U (ANESN Ey) By U(ESN Ey))

AN (
AN ((EyUEY)N(EyUEy))
AN(XN(EUE,))

AN (EyUE,).

So

MANE) +AMANE]N Ey) > ANAN(E U Ey)).
Substituting in (9) gives

AMA) > AMAN(ELUEy)) + MAN (B U Ey)).
So we have verified (8) for £ U Ey, that is, Fy U Ey € M.

Observe that the definition of A-measurable sets is symmetric in that
E € M if, and only if, E¢ € M. Thus
El\EQZElﬂEg: (E(fUEQ)CEM

Hence M is a field. |
Proposition 2.7 If G, F € M(X) are disjoint then

MAN(GUE))=XMANG)+AANF)

forall A C X.
Proof

Let A C X be given. Apply the definition of A-measurability to G with
the test set AN (G U F). Then

MAN(GUF) = A(AN(GUF)NG)
FA(AN(GUF)NGe). (10)

Yet

(GUF)NG = (GNG)U(FNG)
= GU(FNG) =G



since FNG C G. Also

(GUF)NG® = (GNG)U(FNG)
= pUF =F,

because F' and G disjoint means F' C G° and so F N G° = F. Thus (9)
becomes

AMAN(GUE)=AMANG)+ANANF).
|

Using induction it is possible to prove the following.

Corollary 2.8 For all n > 1 if {F;}1<i<n 15 a finite collection of disjoint
sets from M(X) then

A(AﬂUE) => ANANFE) forall ACX,
=1

=1

Proof Left to students. |
Corollary 2.9 If {F;};>1 is a countable collection of disjoint sets from M(X)
then

A(AﬂUE) => XNANFE) forall ACX.
=1

i=1
Proof

For any n > 1 we have AN{J;, F; 2 ANUJ._, Fi and so by monotonicity
we have

A(Aﬂ[jﬂ) > A(Aﬂfjﬂ)
=1 =1

= D AANF)

=1

by Corollary 2.8. Let n — oo to get

The reverse inequality follows from subadditivity. ]
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Theorem 2.10
M(X) is a o-field and X restricted to M(\) is a measure.

Proof
Let { E;};>1 be a countable collection from M. They might not be disjoint
so define F} = E; and

1—1
F;=E\|JE,
j=1

for all © > 1. The F; are disjoint and F; € M since M is a field. Let
Gpn =UjL Fjand G = U2, F; = U2, Ei. Then for any A C X and for
any n > 1 we have

AMA) =MANG,) +MANGE) since G,, € M

= Z MANE)+AMANGS) by Corollary 2.8
=1

> MANE)+MANGe) since G¢ C G5,
=1

True for all n means that

AA) > féMAmmy+MAmGﬂ

i=1

= A (AmUE) +AANGY)
i=1
by Corollary 2.8, since the F; are disjoint,
= AMANG)+AANGT).

True for all A C X means that G € M(\).
Choosing A = X in Corollary 2.9 shows that A is o-additive on M(A).
Hence A is a measure on M(\). |

Example { With the Lebesgue-Stieltjes outer measure p}, of example 8 we
can now form the o-field M(u}.). This is known as the collection of Lebesgue-
Stieltjes measurable sets and is denoted by Lp. If F(z) = x, it is simply
known as the collection of Lebesgue measurable sets and is denoted by L.

We now specialise to those outer measures constructed, as in (4), from
measures defined in a ring.



Theorem 2.11 Let R be a ring of sets in X such that X = |J;o, E; for
some F; € R. Let v be a measure on R and let u* be the outer measure on
X constructed from p as in (4). Then

(i) the elements of R are p*-measurable sets,

(ii) p* = p on R.
Proof

(i) Let £ € R and a test set A C X be given. If u*(A) = +oo then (7)
is trivially satisfied so assume that p*(A) < +oo.

Let € > 0 be given. By the definition (4) there exists a countable collection
{Ei}i>1 € R such that A C |5, E; and

<> H(E) < ' (4) +=.

Yet p is a measure on R and F;, E € R so

u(E;) = p(E; N E) + p(E; N E°).

Combining we see

(A +e > Z (E:N E) + u(E; N E°))
> u(AﬂE)Jru(AﬂECL

since {E; N E},., and {E; N E°},, are covers for AN E and AN E° respec-
tively. True for all € > 0 means that (7) is satisfied and so £ € M and thus
R C M.

(ii) Let £ € R be given. Then since FE is a cover from R for E we have
that

p'(E)= inf E w(E
all covers

Take any other cover {E;};>1 of E. As in Theorem 2.10 replace the E;
by disjoint sets F; C E;, F; € R and where |J;2, F; = J;~, E;. Then



WE) =p Em@ﬂ) sinceEQG%

i=1

1
= Z w(ENE) since p is additive on R,
D BACED I
since ENF;, C F;, C E; and p is monotonic on R. So p(E) is a lower
bound for the sums for which p*(E) is the greatest lower bound and thus
u(E) < p*(E).

Hence u(E) = p*(E). |

We now see that it is reasonable to say that p* extends p.

Further, let A be a collection of subsets of X.
Definition We say that the extended real-valued function ¢ : A — R* is
o-finite if for all A € A there exists a countable collection {A,, },>1 C A such
that A C|J,~, A, and |¢(A4,)| < oo for all n > 1.

Then it can be shown that
Theorem 2.12

If, in addition to the conditions of Theorem 2.11, u is o-finite on R then
the extension to M is unique and is also o-finite.

Proof not given here. |

Example 87 Recall that p, was first defined on P and then extended to £
in Corollary 2.3. In the last example the o-field M (u}.), known as Lp, was
constructed. Now Theorem 2.11 implies that £ C L and p} = pp on €. So
it is reasonable to write u}. simply as pp on Lp, called the Lebesgue-Stieltjes

measure. If F(x) = x, we write pp simply as u, called the Lebesgue measure
on R.

Notef Lr 2 £ O P so Lr is a o-field containing P. But B, the Borel
sets of R, is the smallest o-field containing P. Hence Lr D B, true for all
distribution functions F.



