Measure Theory

1 Classes of Subsets

1.1 Topology

Definition A Topological space (X, \mathcal{T}) consists of a non-empty set X together with a collection \mathcal{T} of subsets of X such that
(T1) $X, \phi \in \mathcal{T}$,
(T2) If $A_{1}, \ldots, A_{n} \in \mathcal{T}$ then $\bigcap_{i=1}^{n} A_{i} \in \mathcal{T}$,
(T3) If $A_{i} \in \mathcal{T}, i \in I$ for some index set I then $\bigcup_{i \in I} A_{i} \in \mathcal{T}$.
The elements of \mathcal{T} are called the open sets.
Note Every set has at least two topologies on it, namely the trivial ones $\mathcal{T}=\{X, \phi\}$ and $\mathcal{T}=\mathcal{P}(X)$, i.e. the collection of all subsets of X.
Lemma 1.1 If $\mathcal{T}_{j}, j \in J$ are topologies on X then $\bigcap_{j \in J} \mathcal{T}_{j}$ is a topology on X.
Proof
(T1) $X, \phi \in \mathcal{T}_{j}$ for all j so $X, \phi \in \bigcap_{j \in J} \mathcal{T}_{j}$.
(T2) Take any finite collection of sets $A_{1}, \ldots, A_{n} \in \bigcap_{j \in J} \mathcal{T}_{j}$. Then A_{1}, \ldots, A_{n} $\in \mathcal{T}_{j}$ for each j and so $\bigcap_{i=1}^{n} A_{i} \in \mathcal{T}_{j}$ for each j and so $\bigcap_{i=1}^{n} A_{i} \in \bigcap_{j \in J} \mathcal{T}_{j}$.
(T3) Take any collection of sets $A_{i} \in \bigcap_{j \in J} \mathcal{T}_{j}, i \in I$. Then $A_{i} \in \mathcal{T}_{j}$, for all $i \in I$ and all $j \in J$ and so $\bigcup_{i \in I} A_{i} \in \mathcal{T}_{j}$ for each j and thus $\bigcup_{i \in I} A_{i} \in$ $\bigcap_{j \in J} \mathcal{T}_{j}$.
Corollary 1.2 There exists a topology \mathcal{U} on \mathbb{R} containing all intervals (a, b) and such that if \mathcal{T}_{0} is any other topology containing all such intervals then $\mathcal{U} \subseteq \mathcal{T}_{0}$.
Proof There exists at least one topology on \mathbb{R} containing all (a, b), namely $\mathcal{T}_{0}=\mathcal{P}(\mathbb{R})$, the power set of \mathbb{R}. Set $\mathcal{U}=\bigcap \mathcal{T}$, the intersection over all topologies containing all the intervals (a, b). This is a topology by Lemma 1.1 and the minimality property is immediate from the definition.

Definition We say that \mathcal{U} is the usual topology on \mathbb{R}.
Definition Given any collection \mathcal{A} of subsets of X, the intersection of all topologies containing \mathcal{A} is said to be the topology generated by \mathcal{A}.
Example 1 The usual topology on \mathbb{R} is the topology generated by the intervals (a, b).

There are other topologies on \mathbb{R}, such as
Example 2 The co-finite topology on \mathbb{R} is defined by $A \in$ co-finite if, and only if, either $A=\phi$ or $\left|A^{c}\right|<\infty$. (That is, the complement is finite.)

For the following definition we require the idea of pre-image of a map $f: X \rightarrow Y$. So if $A \subseteq Y$ then the pre-image of A is given by

$$
f^{-1}(A)=\{x \in X: f(x) \in A\}
$$

Definition Given topological spaces $\left(X, \mathcal{T}_{X}\right),\left(Y, \mathcal{T}_{Y}\right)$ and a map $f: X \rightarrow Y$ we say that f is continuous with respect to $\mathcal{T}_{X}, \mathcal{T}_{Y}$ if

$$
U \in \mathcal{T}_{Y} \Rightarrow f^{-1}(U) \in \mathcal{T}_{X}
$$

(That is, the preimage of an open set is open.)
We will require later the following result.
Theorem 1.3 (Heine-Borel) If $[a, b] \subseteq \mathbb{R}$ is covered by a collection of $\left(c_{i}, d_{i}\right)$, so $[a, b] \subseteq \bigcup_{i \in I}\left(c_{i}, d_{i}\right)$, then there exists a finite sub-collection of the $\left(c_{i}, d_{i}\right)$, which can relabeled as $1 \leq i \leq N$ such that $[a, b] \subseteq \bigcup_{i=1}^{N}\left(c_{i}, d_{i}\right)$.
Proof See Appendix.
Theorem 1.4 (Lindelöf's Theorem) If $\mathcal{G}=\left\{I_{\alpha}: \alpha \in A\right\}$ is a collection of intervals $(a, b) \subseteq \mathbb{R}$, possibly an uncountable collection, then there exists a countable subcollection $\left\{I_{i}: i \geq 1\right\} \subseteq \mathcal{G}$ such that

$$
\bigcup_{\alpha \in A} I_{\alpha}=\bigcup_{i=1}^{\infty} I_{i} .
$$

Proof See Appendix

Corollary 1.5

Let \mathcal{S} be the set of all countable unions of intervals $(a, b) \subseteq \mathbb{R}$. Then $\mathcal{S}=\mathcal{U}$, the usual topology.
Proof Let $S \in \mathcal{S}$ so $S=\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)$ for some $\left(a_{i}, b_{i}\right)$ But $\left(a_{i}, b_{i}\right) \in \mathcal{U}$ for all i, and \mathcal{U} is a topology so $\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right) \in \mathcal{U}$. Thus $S \in \mathcal{U}$ and so $\mathcal{S} \subseteq \mathcal{U}$.

We now show that \mathcal{S} is a topology by verifying the properties $\mathrm{T} 1, \mathrm{~T} 2$ and T3.
(T1) $\mathbb{R}=\bigcup_{n \in \mathbb{N}}(-n, n) \in \mathcal{S}$ and $\phi=(0,0) \in \mathcal{S}$.
(T2) If $S_{1}, S_{2}, S_{3}, \ldots, S_{n} \in \mathcal{S}$ then each

$$
S_{i}=\bigcup_{j_{i}=1}^{\infty} I_{j_{i}} \text { for some } I_{j_{i}}=\left(a_{j_{i}}, b_{j_{i}}\right)
$$

Then

$$
\begin{aligned}
\bigcap_{i=1}^{n} S_{i} & =\bigcap_{i=1}^{n} \bigcup_{j_{i}=1}^{\infty} I_{j_{i}} \\
& =\left(\bigcup_{j_{1}=1}^{\infty} I_{j_{1}}\right) \cap\left(\bigcup_{j_{2}=1}^{\infty} I_{j_{2}}\right) \cap \ldots \cap\left(\bigcup_{j_{n}=1}^{\infty} I_{j_{n}}\right) \\
& =\bigcup_{j_{1}=1}^{\infty} \bigcup_{j_{2}=1}^{\infty} \ldots \bigcup_{j_{n}=1}^{\infty}\left(I_{j_{1}} \cap I_{j_{2}} \cap \ldots \cap I_{j_{n}}\right) .
\end{aligned}
$$

Importantly we have a finite intersection of open intervals which is therefore an open interval. (It is possible that an infinite intersection of open intervals is closed.) Thus $\bigcap_{i=1}^{n} S_{i}$ is a countable union of open intervals, hence it is an element of \mathcal{S}.
(T3) If $S_{k} \in \mathcal{S}$ for $k \in K$, perhaps an uncountable collection, then $\bigcup_{k \in K} S_{k}=\bigcup_{k \in K} \bigcup_{j_{k}=1}^{\infty} I_{j_{k}}$ is a, possibly uncountable, union of intervals $\left(a_{j_{k}}, b_{j_{i k}}\right)$. But by Lindelöf's Theorem this can be written as a countable union and so $\bigcup_{k \in K} S_{k} \in \mathcal{S}$.

Hence \mathcal{S} is a topology containing the intervals (a, b). But \mathcal{U} is the minimal topology containing these intervals. Hence $\mathcal{U} \subseteq \mathcal{S}$.

Thus $\mathcal{U}=\mathcal{S}$.

1.2 Rings

Definition A collection, \mathcal{S}, of subsets of the non-empty set X is a semi-ring if
(i) $\phi \in \mathcal{S}$,
(ii) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$,
(iii) $A, B \in \mathcal{S} \Rightarrow A \backslash B=\bigcup_{i=1}^{N} E_{i}$, a finite disjoint union of $E_{i} \in \mathcal{S}$.

Example 3 The collection, \mathcal{P}, of all finite intervals of the form $(a, b] \subseteq \mathbb{R}$ form a semi-ring.

This is the most important example of a semi-ring we shall study. It should be compared with the collection of all intervals of the form (a, b) that does not form a semi-ring.

Verification is left to the student.
Definition A non-empty collection, \mathcal{R}, of subsets of X is a ring if
(i) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$,
(ii) $A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}$.

Note (i) $\mathcal{R} \neq \phi$ implies that there exists a set A in \mathcal{R} and so $\phi=A \backslash A \in \mathcal{R}$.
*(ii) Such a collection, with the operations

$$
A+B=A \triangle B \quad \text { and } \quad A \cdot B=A \cap B
$$

is a ring as defined in the second year course. (Here $A \Delta B=(A \backslash B) \cup(B \backslash A)$ is the symmetric difference.)
Note The collection \mathcal{P} is not a ring, for instance $(0,3]$ and $(1,2] \in \mathcal{P}$ but $(0,3] \backslash(1,2]=(0,1] \cup(2,3] \notin \mathcal{P}$.
Definition The collection, \mathcal{E}, of all finite unions of disjoint members of \mathcal{P}, is called the set elementary figures in \mathbb{R}.
Example The collection \mathcal{E} is a ring.

Verification.

Let $A, B \in \mathcal{E}$, so $A=\bigcup_{i=1}^{m} A_{i}$ and $B=\bigcup_{j=1}^{n} B_{j}$ where $A_{i}, B_{j} \in \mathcal{P}$, disjoint unions. Then

$$
\begin{aligned}
A \backslash B & =A \cap B^{c}=\left(\bigcup_{i=1}^{m} A_{i}\right) \cap B^{c} \\
& =\bigcup_{i=1}^{m}\left(A_{i} \cap B^{c}\right),
\end{aligned}
$$

a disjoint union. Writing $A_{i}=(a, b]$ and $B=\bigcup_{j=1}^{n}\left(a_{j}, b_{j}\right]$ we see that

$$
A_{i} \cap B^{c}=(a, b] \cap\left\{\left(-\infty, a_{1}\right] \cup \bigcup_{j=1}^{n-1}\left(b_{j}, a_{j+1}\right] \cup\left(b_{n},+\infty\right]\right\}
$$

which, on applying the distributive law, is seen to be in \mathcal{E}. Then, since the A_{i} are disjoint we see that $A \backslash B$ is a disjoint union of sets from \mathcal{E} and so $A \backslash B \in \mathcal{E}$, i.e. condition (ii) holds.

Also $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$, a disjoint union. By what we have already proved it suffices to show that $A \cap B \in \mathcal{E}$. But $A \cap B=$ $\bigcup_{i=1}^{m} \bigcup_{j=1}^{n}\left(A_{i} \cap B_{j}\right)$ a disjoint union of sets from \mathcal{P} and so in \mathcal{E}. Thus condition (i) is satisfied. Hence \mathcal{E} is a ring.

Definition A ring \mathcal{R} is a σ-ring if it is closed under countable unions. That is, given $A_{n} \in \mathcal{R}, n \geq 1$ then $\bigcup_{n \geq 1} A_{n} \in \mathcal{R}$.
Note Given $A_{n} \in \mathcal{R}$ a σ-ring, write $A=\bigcup_{n \geq 1} A_{n}$. It is trivial that $\bigcap_{n \geq 1} A_{n} \subseteq A$ but this observation means that we can write

$$
\bigcap_{n \geq 1} A_{n}=A \backslash\left(A \backslash \bigcap_{n \geq 1} A_{n}\right) .
$$

Here

$$
\begin{aligned}
A \backslash \bigcap_{n \geq 1} A_{n} & =A \cap\left(\bigcap_{n \geq 1} A_{n}\right)^{c}=A \cap\left(\bigcup_{n \geq 1} A_{n}^{c}\right) \\
& =\bigcup_{n \geq 1}\left(A \cap A_{n}^{c}\right)=\bigcup_{n \geq 1}\left(A \backslash A_{n}\right) .
\end{aligned}
$$

Since A and $A_{n} \in \mathcal{R}$ for all $n \geq 1$ we have $A \backslash A_{n} \in \mathcal{R}$, and so $\bigcup_{n \geq 1}\left(A \backslash A_{n}\right) \in$ \mathcal{R} and thus $A \backslash\left(A \backslash \bigcap_{n \geq 1} A_{n}\right)$ or $\bigcap_{n \geq 1} A_{n} \in \mathcal{R}$. Hence σ-rings are closed under countable intersections.

1.3 Fields

Definition A non-empty collection \mathcal{F} of subsets of a non-empty set X is a field (or algebra) if
(i) $X \in \mathcal{F}$,
(ii) \mathcal{F} is a ring.

Further X is a σ-field (or σ-algebra) if
(i) $X \in \mathcal{F}$,
(ii) \mathcal{F} is a σ-ring.

Note A field can be defined to satisfy
(i) $X \in \mathcal{F}$,
(ii) If $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$,
(iii) If $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

Similarly for σ-fields.
*Verification that (i) $X \in \mathcal{F}$, (ii) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$, and (iii) $A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}$ are equivalent to (i') $X \in \mathcal{F}$, (ii') $A, B \in \mathcal{R} \Rightarrow$ $A \cup B \in \mathcal{R}$, and (iii') if $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$.

Assume (i), (ii) and (iii). Then (i') and (ii') obviously holds while (iii') follows from (iii) and (i) with $X, A \in \mathcal{F}$ implying $X \backslash A \in \mathcal{F}$, i.e. $A^{c} \in \mathcal{F}$.

Assume (i'), (ii') and (iii'). Then (i) and (ii) obviously holds while (iii) follows from $A \backslash B=A \cap B^{c}=\left(A^{c} \cup B\right)^{c}$ which is in \mathcal{R} by (ii') and (iii').
Example 5 (a) Let X be an infinite set. Define \mathcal{F} by $A \in \mathcal{F}$ if, and only if, either $|A|<\infty$ or $\left|A^{c}\right|<\infty$. Then \mathcal{F} is a field but it is not a σ-field.
(b) Let X be an infinite set. Define \mathcal{F} by $A \in \mathcal{F}$ if, and only if, either $|A|$ is countable or $\left|A^{c}\right|$ is countable. Then \mathcal{F} is a σ-field.
Theorem 1.5 The intersection of any non-empty collection of rings, fields or σ-fields in X is, respectively, a ring, field or σ-field.

Proof is identical in method to that of Lemma 1.1.
Corollary 1.6 Given a collection \mathcal{A} of subsets of X there exists
(i) a minimal ring containing \mathcal{A}, denoted by $\mathcal{R}(\mathcal{A})$,
(ii) a minimal σ-field containing \mathcal{A}, denoted by $\sigma(\mathcal{A})$.

These are minimal in that if
(i) \mathcal{R} is any ring containing \mathcal{A} then $\mathcal{R}(\mathcal{A}) \subseteq \mathcal{R}$,
(ii) \mathcal{F} is a σ-field containing \mathcal{A} then $\sigma(\mathcal{A}) \subseteq \mathcal{F}$.

Proof Simply choose $\mathcal{R}(\mathcal{A})$ to be the intersection of all rings containing \mathcal{A} and $\sigma(\mathcal{A})$ to be the intersection of all σ-fields containing \mathcal{A}. These are non-empty intersections since there is always at least one ring or σ-field on a non-empty set X, namely the power set $P(X)$.
Definition We say that $\mathcal{R}(\mathcal{A})$ is the ring generated by \mathcal{A}. Similarly we say that $\sigma(\mathcal{A})$ is the σ-field generated by \mathcal{A}, often denoted by $\mathcal{B}(\mathcal{A})$, the Borel field generated by \mathcal{A}.
Theorem 1.7 Let $\mathcal{R}(\mathcal{C})$ be the ring generated by the semi-ring \mathcal{C} in X. Then $\mathcal{R}(\mathcal{C})$ is the collection of finite unions of disjoint sets from \mathcal{C}, that is

$$
\begin{equation*}
\mathcal{R}(\mathcal{C})=\left\{A \subseteq X: A=\bigcup_{i=1}^{n} E_{i} \text { for some disjoint members of } \mathcal{C}\right\} . \tag{*}
\end{equation*}
$$

Proof Let \mathcal{A} denote the right hand side of $\left(^{*}\right)$. If $A \in \mathcal{A}$ then $A=\bigcup_{i=1}^{n} E_{i}$ for some disjoint members of \mathcal{C}. But the ring $\mathcal{R}(\mathcal{C})$ is closed under finite unions and in particular, closed under finite unions of elements of C and so $A \in \mathcal{R}(\mathcal{C})$. Hence $\mathcal{A} \subseteq \mathcal{R}(\mathcal{C})$.

Next we will show that \mathcal{A} is a ring which we do by verifying the definition. Take any $A, B \in \mathcal{R}(\mathcal{C})$ so

$$
A=\bigcup_{i=1}^{m} E_{i} \text { and } B=\bigcup_{j=1}^{n} F_{j}
$$

for some finite disjoint collections $\left\{E_{i}\right\}$ and $\left\{F_{j}\right\}$ in \mathcal{C}. Then

$$
\begin{align*}
A \backslash B & =\left(\bigcup_{i=1}^{m} E_{i}\right) \cap\left(\bigcup_{j=1}^{n} F_{j}\right)^{c} \\
& =\left(\bigcup_{i=1}^{m} E_{i}\right) \cap\left(\bigcap_{j=1}^{n} F_{j}^{c}\right)^{2} \\
& =\bigcup_{i=1}^{m}\left(E_{i} \cap\left(\bigcap_{j=1}^{n} F_{j}^{c}\right)\right) \\
& =\bigcup_{i=1}^{m}\left\{\bigcap_{j=1}^{n}\left(E_{i} \backslash F_{j}\right)\right\} \tag{a}
\end{align*}
$$

Yet \mathcal{C} is a semi-ring so

$$
E_{i} \backslash F_{j}=\bigcup_{\ell=1}^{L_{i j}} H_{i j \ell}
$$

a disjoint union of sets from \mathcal{C}. So

$$
\begin{align*}
\bigcap_{j=1}^{n}\left(E_{i} \backslash F_{j}\right) & =\bigcap_{j=1}^{n} \bigcup_{\ell=1}^{L_{i j}} H_{i j \ell} \\
& =\left(\bigcup_{\ell_{1}=1}^{L_{i 1}} H_{i 1 \ell_{1}}\right) \cap\left(\bigcup_{\ell_{2}=1}^{L_{i 2}} H_{i 2 \ell_{2}}\right) \cap \ldots \cap\left(\bigcup_{\ell_{n}=1}^{L_{i n}} H_{i n \ell_{n}}\right) \\
& =\bigcup_{\ell_{1}=1}^{L_{i 1}} \bigcup_{\ell_{2}=1}^{L_{i 2}} \ldots \bigcup_{\ell_{n}=1}^{L_{i n}}\left(H_{i 1 \ell_{1}} \cap H_{i 2 \ell_{2}} \cap \ldots \cap H_{i n \ell_{n}}\right), \tag{b}
\end{align*}
$$

a disjoint union. Again since \mathcal{C} is a semi-ring we have

$$
H_{i 1 \ell_{1}} \cap H_{i 2 \ell_{2}} \cap \ldots \cap H_{i n \ell_{n}} \in \mathcal{C} .
$$

So combining (a) and (b) we see that $A \backslash B$ is a disjoint union of sets from \mathcal{C}, that is, $A \backslash B \in \mathcal{A}$

Similarly $E_{i} \cap F_{j} \in \mathcal{C}$ and so

$$
\begin{aligned}
A \cap B & =\left(\bigcup_{i=1}^{m} E_{i}\right) \cap\left(\bigcup_{j=1}^{n} F_{j}\right) \\
& =\bigcup_{i=1}^{m} \bigcup_{j=1}^{n}\left(E_{i} \cap F_{j}\right) \\
& \in \mathcal{A} .
\end{aligned}
$$

Then $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$ is a disjoint union of sets that we have seen above are in \mathcal{A} and so $A \cup B \in \mathcal{A}$. Thus \mathcal{A} is a ring.

Trivially $\mathcal{C} \subseteq \mathcal{A}$. But by definition $\mathcal{R}(\mathcal{C})$ is the smallest ring containing \mathcal{C}. Hence $\mathcal{R}(\mathcal{C}) \subseteq \mathcal{A}$.

Combining we get our result, $\mathcal{R}(\mathcal{C})=\mathcal{A}$.
Corollary $1.8 \mathcal{E}=\mathcal{R}(\mathcal{P})$.
Proof This follows immediately from Theorem 1.7 and the definition of \mathcal{E} as the collection of finite disjoint unions of sets from \mathcal{P}, a semi-ring.
Definition The Borel sets in \mathbb{R} are the elements of the σ-field generated by \mathcal{P}. It can be denoted by $\sigma(\mathcal{P}), \mathcal{B}(\mathcal{P})$ or just \mathcal{B}.
Theorem 1.9 In \mathbb{R} we have
(i) $\mathcal{U} \subseteq \mathcal{B}(\mathcal{P})$,
(ii) $\mathcal{P} \subseteq \mathcal{B}(\mathcal{U})$,
(iii) $\mathcal{B}(\mathcal{P})=\mathcal{B}(\mathcal{U})$.

Proof
(i) Given any $A \in \mathcal{U}$ we can write

$$
\begin{aligned}
A & =\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right) \quad \text { for some } a_{i} \text { and } b_{i}, \text { by Corollary } 1.5 \\
& =\bigcup_{i=1}^{\infty} \bigcup_{n=1}^{\infty}\left(a_{i}, b_{i}-\frac{1}{n}\right] .
\end{aligned}
$$

Each $\left(a_{i}, b_{i}-1 / n\right] \in \mathcal{P}$ and so A is contained in any σ-field containing \mathcal{P}, in particular $\mathcal{B}(\mathcal{P})$. Hence $\mathcal{U} \subseteq \mathcal{B}(\mathcal{P})$.
(ii) Given any $A \in \mathcal{P}$ we can write

$$
\begin{aligned}
A & =(a, b] \quad \text { for some } a \text { and } b, \\
& =\bigcap_{n=1}^{\infty}\left(a, b+\frac{1}{n}\right) .
\end{aligned}
$$

Each $(a, b+1 / n) \in \mathcal{U}$ and, since σ-fields are closed under countable intersections, A lies in any σ-field containing \mathcal{U}, in particular, $\mathcal{B}(\mathcal{U})$. Hence $\mathcal{P} \subseteq \mathcal{B}(\mathcal{U})$.
(iii) Part (i) tells us that $\mathcal{B}(\mathcal{P})$ is a σ-field containing \mathcal{U}. But $\mathcal{B}(\mathcal{U})$ is the minimal σ-field containing \mathcal{U}. Hence $\mathcal{B}(\mathcal{U}) \subseteq \mathcal{B}(\mathcal{P})$. Similarly part (ii) implies $\mathcal{B}(\mathcal{P}) \subseteq \mathcal{B}(\mathcal{U})$. Hence $\mathcal{B}(\mathcal{P})=\mathcal{B}(\mathcal{U})$.

* Note For a collection of subsets \mathcal{A} of a set X the σ-field generated by \mathcal{A} need not contain the topology generated by \mathcal{A}. This is because topologies contain possibly uncountable unions. Exceptionally, the usual topology, \mathcal{U}, in \mathbb{R} is made up from countable unions of intervals, (a, b), by Corollary 1.5. Hence any σ-field containing all intervals (a, b) must also contain \mathcal{U}. The proof of Corollary 1.5 depends essentially on Lindelöf's Lemma, Theorem 1.4 , and if we look at the proof of Theorem 1.4 we see that the result depends on the existence of a countably dense subset of \mathbb{R}, namely \mathbb{Q}.

