
Measure Theory

1 Classes of Subsets
1.1 Topology
Definition A Topological space (X, T ) consists of a non-empty set X to-
gether with a collection T of subsets of X such that

(T1) X, φ ∈ T ,
(T2) If A1, ..., An ∈ T then

⋂n
i=1 Ai ∈ T ,

(T3) If Ai ∈ T , i ∈ I for some index set I then
⋃

i∈I Ai ∈ T .

The elements of T are called the open sets.

Note Every set has at least two topologies on it, namely the trivial ones
T = {X,φ} and T = P(X), i.e. the collection of all subsets of X.

Lemma 1.1 If Tj, j ∈ J are topologies on X then
⋂

j∈J Tj is a topology on
X.
Proof

(T1) X, φ ∈ Tj for all j so X, φ ∈ ⋂
j∈J Tj.

(T2) Take any finite collection of sets A1, ..., An ∈
⋂

j∈J Tj. Then A1, ..., An

∈ Tj for each j and so
⋂n

i=1 Ai ∈ Tj for each j and so
⋂n

i=1 Ai ∈
⋂

j∈J Tj.
(T3) Take any collection of sets Ai ∈

⋂
j∈J Tj, i ∈ I. Then Ai ∈ Tj, for

all i ∈ I and all j ∈ J and so
⋃

i∈I Ai ∈ Tj for each j and thus
⋃

i∈I Ai ∈⋂
j∈J Tj. ¥

Corollary 1.2 There exists a topology U on R containing all intervals (a, b)
and such that if T0 is any other topology containing all such intervals then
U ⊆ T0.

Proof There exists at least one topology on R containing all (a, b), namely
T0 = P(R), the power set of R. Set U =

⋂ T , the intersection over all
topologies containing all the intervals (a, b). This is a topology by Lemma
1.1 and the minimality property is immediate from the definition. ¥
Definition We say that U is the usual topology on R.

Definition Given any collection A of subsets of X, the intersection of all
topologies containing A is said to be the topology generated by A.
Example 1 The usual topology on R is the topology generated by the in-
tervals (a, b).

There are other topologies on R, such as
Example 2 The co-finite topology on R is defined by A ∈ co-finite if, and
only if, either A = φ or |Ac| < ∞. (That is, the complement is finite.)

For the following definition we require the idea of pre-image of a map
f : X → Y . So if A ⊆ Y then the pre-image of A is given by
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f−1(A) = {x ∈ X : f(x) ∈ A}.
Definition Given topological spaces (X, TX), (Y, TY ) and a map f : X → Y
we say that f is continuous with respect to TX , TY if

U ∈ TY ⇒ f−1(U) ∈ TX .

(That is, the preimage of an open set is open.)

We will require later the following result.
Theorem 1.3 (Heine-Borel) If [a, b] ⊆ R is covered by a collection of (ci, di),
so [a, b] ⊆ ⋃

i∈I(ci, di), then there exists a finite sub-collection of the (ci, di),

which can relabeled as 1 ≤ i ≤ N such that [a, b] ⊆ ⋃N
i=1(ci, di).

Proof See Appendix. ¥
Theorem 1.4 (Lindelöf’s Theorem) If G = {Iα : α ∈ A} is a collection of
intervals (a, b) ⊆ R, possibly an uncountable collection, then there exists a
countable subcollection {Ii : i ≥ 1} ⊆ G such that

⋃
α∈A

Iα =
∞⋃
i=1

Ii.

Proof See Appendix ¥
Corollary 1.5

Let S be the set of all countable unions of intervals (a, b) ⊆ R. Then
S = U , the usual topology.

Proof Let S ∈ S so S =
⋃∞

i=1(ai, bi) for some (ai, bi) But (ai, bi) ∈ U for all
i, and U is a topology so

⋃∞
i=1(ai, bi) ∈ U . Thus S ∈ U and so S ⊆ U .

We now show that S is a topology by verifying the properties T1, T2 and
T3.

(T1) R =
⋃

n∈N(−n, n) ∈ S and φ = (0, 0) ∈ S.

(T2) If S1, S2, S3, ..., Sn ∈ S then each

Si =
∞⋃

ji=1

Iji
for some Iji

= (aji
, bji

).

Then
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n⋂
i=1

Si =
n⋂

i=1

∞⋃
ji=1

Iji

=

( ∞⋃
j1=1

Ij1

)
∩

( ∞⋃
j2=1

Ij2

)
∩ ... ∩

( ∞⋃
jn=1

Ijn

)

=
∞⋃

j1=1

∞⋃
j2=1

...

∞⋃
jn=1

(Ij1 ∩ Ij2 ∩ ... ∩ Ijn) .

Importantly we have a finite intersection of open intervals which is therefore
an open interval. (It is possible that an infinite intersection of open intervals
is closed.) Thus

⋂n
i=1 Si is a countable union of open intervals, hence it is an

element of S.
(T3) If Sk ∈ S for k ∈ K, perhaps an uncountable collection, then⋃

k∈K Sk =
⋃

k∈K

⋃∞
jk=1 Ijk

is a, possibly uncountable, union of intervals
(ajk

, bjik
). But by Lindelöf’s Theorem this can be written as a countable

union and so
⋃

k∈K Sk ∈ S.
Hence S is a topology containing the intervals (a, b). But U is the minimal

topology containing these intervals. Hence U ⊆ S.
Thus U = S. ¥

1.2 Rings
Definition A collection, S, of subsets of the non-empty set X is a semi-ring
if

(i) φ ∈ S,
(ii) A, B ∈ S ⇒ A ∩B ∈ S,
(iii) A,B ∈ S ⇒ A \B =

⋃N
i=1 Ei, a finite disjoint union of Ei ∈ S.

Example 3 The collection, P , of all finite intervals of the form (a, b] ⊆ R
form a semi-ring.

This is the most important example of a semi-ring we shall study. It
should be compared with the collection of all intervals of the form (a, b) that
does not form a semi-ring.

Verification is left to the student.

Definition A non-empty collection, R, of subsets of X is a ring if

(i) A,B ∈ R ⇒ A ∪B ∈ R,
(ii) A, B ∈ R ⇒ A \B ∈ R.

Note (i) R 6= φ implies that there exists a set A in R and so φ = A\A ∈ R.

*(ii) Such a collection, with the operations
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A + B = A M B and A.B = A ∩B

is a ring as defined in the second year course. (Here A M B = (A\B)∪(B\A)
is the symmetric difference.)

Note The collection P is not a ring, for instance (0, 3] and (1, 2] ∈ P but
(0, 3] \ (1, 2] = (0, 1] ∪ (2, 3] /∈ P .

Definition The collection, E , of all finite unions of disjoint members of P ,
is called the set elementary figures in R.

Example The collection E is a ring.

Verification.
Let A,B ∈ E , so A =

⋃m
i=1 Ai and B =

⋃n
j=1 Bj where Ai, Bj ∈ P ,

disjoint unions. Then

A \B = A ∩Bc =

(
m⋃

i=1

Ai

)
∩Bc

=
m⋃

i=1

(Ai ∩Bc) ,

a disjoint union. Writing Ai = (a, b] and B =
⋃n

j=1(aj, bj] we see that

Ai ∩Bc = (a, b] ∩
{

(−∞, a1] ∪
n−1⋃
j=1

(bj, aj+1] ∪ (bn, +∞]

}

which, on applying the distributive law, is seen to be in E . Then, since the
Ai are disjoint we see that A \ B is a disjoint union of sets from E and so
A \B ∈ E , i.e. condition (ii) holds.

Also A ∪ B = (A \ B) ∪ (A ∩ B) ∪ (B \ A), a disjoint union. By what
we have already proved it suffices to show that A ∩ B ∈ E . But A ∩ B =⋃m

i=1

⋃n
j=1(Ai∩Bj) a disjoint union of sets from P and so in E . Thus condition

(i) is satisfied. Hence E is a ring. ¥
Definition A ring R is a σ-ring if it is closed under countable unions. That
is, given An ∈ R, n ≥ 1 then

⋃
n≥1 An ∈ R.

Note Given An ∈ R a σ-ring, write A =
⋃

n≥1 An. It is trivial that⋂
n≥1 An ⊆ A but this observation means that we can write

⋂
n≥1

An = A \
(

A \
⋂
n≥1

An

)
.
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Here

A \
⋂
n≥1

An = A ∩
(⋂

n≥1

An

)c

= A ∩
(⋃

n≥1

Ac
n

)

=
⋃
n≥1

(A ∩ Ac
n) =

⋃
n≥1

(A \ An).

Since A and An ∈ R for all n ≥ 1 we have A\An ∈ R, and so
⋃

n≥1(A\An) ∈
R and thus A \ (

A \⋂
n≥1 An

)
or

⋂
n≥1 An ∈ R. Hence σ-rings are closed

under countable intersections.

1.3 Fields
Definition A non-empty collection F of subsets of a non-empty set X is a
field (or algebra) if

(i) X ∈ F ,
(ii) F is a ring.

Further X is a σ-field (or σ-algebra) if

(i) X ∈ F ,
(ii) F is a σ-ring.

Note A field can be defined to satisfy

(i) X ∈ F ,
(ii) If A ∈ F then Ac ∈ F ,
(iii) If A,B ∈ F then A ∪B ∈ F .

Similarly for σ-fields.

*Verification that (i) X ∈ F , (ii) A,B ∈ R ⇒ A ∪ B ∈ R, and (iii)
A,B ∈ R ⇒ A \ B ∈ R are equivalent to (i’) X ∈ F , (ii’) A,B ∈ R ⇒
A ∪B ∈ R,and (iii’) if A ∈ F then Ac ∈ F .

Assume (i), (ii) and (iii). Then (i’) and (ii’) obviously holds while (iii’)
follows from (iii) and (i) with X, A ∈ F implying X \ A ∈ F , i.e. Ac ∈ F .

Assume (i’), (ii’) and (iii’). Then (i) and (ii) obviously holds while (iii)
follows from A \B = A ∩Bc = (Ac ∪B)c which is in R by (ii’) and (iii’). ¥
Example 5 (a) Let X be an infinite set. Define F by A ∈ F if, and only if,
either |A| < ∞ or |Ac| < ∞. Then F is a field but it is not a σ-field.

(b) Let X be an infinite set. Define F by A ∈ F if, and only if, either
|A| is countable or |Ac| is countable. Then F is a σ-field.

Theorem 1.5 The intersection of any non-empty collection of rings, fields
or σ-fields in X is, respectively, a ring, field or σ-field .
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Proof is identical in method to that of Lemma 1.1. ¥
Corollary 1.6 Given a collection A of subsets of X there exists

(i) a minimal ring containing A, denoted by R(A),
(ii) a minimal σ-field containing A, denoted by σ(A).

These are minimal in that if

(i) R is any ring containing A then R(A) ⊆ R,
(ii) F is a σ-field containing A then σ(A) ⊆ F .

Proof Simply choose R(A) to be the intersection of all rings containing
A and σ(A) to be the intersection of all σ-fields containing A. These are
non-empty intersections since there is always at least one ring or σ-field on
a non-empty set X, namely the power set P (X). ¥
Definition We say that R(A) is the ring generated by A. Similarly we say
that σ(A) is the σ-field generated by A, often denoted by B(A), the Borel
field generated by A.

Theorem 1.7 Let R(C) be the ring generated by the semi-ring C in X. Then
R(C) is the collection of finite unions of disjoint sets from C, that is

R(C) =

{
A ⊆ X : A =

n⋃
i=1

Ei for some disjoint members of C
}

. (*)

Proof Let A denote the right hand side of (*). If A ∈ A then A =
⋃n

i=1 Ei

for some disjoint members of C. But the ring R(C) is closed under finite
unions and in particular, closed under finite unions of elements of C and so
A ∈ R(C). Hence A ⊆ R(C).

Next we will show that A is a ring which we do by verifying the definition.
Take any A,B ∈ R(C) so

A =
m⋃

i=1

Ei and B =
n⋃

j=1

Fj

for some finite disjoint collections {Ei} and {Fj} in C. Then
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A \B =

(
m⋃

i=1

Ei

)
∩

(
n⋃

j=1

Fj

)c

=

(
m⋃

i=1

Ei

)
∩

(
n⋂

j=1

F c
j

)

=
m⋃

i=1

(
Ei ∩

(
n⋂

j=1

F c
j

))

=
m⋃

i=1

{
n⋂

j=1

(Ei \ Fj)

}
. (a)

Yet C is a semi-ring so

Ei \ Fj =

Lij⋃

`=1

Hij`,

a disjoint union of sets from C. So

n⋂
j=1

(Ei \ Fj) =
n⋂

j=1

Lij⋃

`=1

Hij`

=

(
Li1⋃

`1=1

Hi1`1

)
∩

(
Li2⋃

`2=1

Hi2`2

)
∩ ... ∩

(
Lin⋃

`n=1

Hin`n

)

=

Li1⋃

`1=1

Li2⋃

`2=1

...

Lin⋃

`n=1

(Hi1`1 ∩Hi2`2 ∩ ... ∩Hin`n) , (b)

a disjoint union. Again since C is a semi-ring we have

Hi1`1 ∩Hi2`2 ∩ ... ∩Hin`n ∈ C.
So combining (a) and (b) we see that A \ B is a disjoint union of sets from
C, that is, A \B ∈ A

Similarly Ei ∩ Fj ∈ C and so
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A ∩B =

(
m⋃

i=1

Ei

)
∩

(
n⋃

j=1

Fj

)

=
m⋃

i=1

n⋃
j=1

(Ei ∩ Fj)

∈ A.

Then A∪B = (A \B)∪ (A∩B)∪ (B \A) is a disjoint union of sets that
we have seen above are in A and so A ∪B ∈ A. Thus A is a ring.

Trivially C ⊆ A. But by definition R(C) is the smallest ring containing
C. Hence R(C) ⊆ A.

Combining we get our result, R(C) = A. ¥
Corollary 1.8 E = R(P).

Proof This follows immediately from Theorem 1.7 and the definition of E
as the collection of finite disjoint unions of sets from P , a semi-ring. ¥
Definition The Borel sets in R are the elements of the σ-field generated by
P . It can be denoted by σ(P),B(P) or just B.

Theorem 1.9 In R we have

(i) U ⊆ B(P),
(ii) P ⊆ B(U),
(iii) B(P) = B(U).

Proof
(i) Given any A ∈ U we can write

A =
∞⋃
i=1

(ai, bi) for some ai and bi, by Corollary 1.5

=
∞⋃
i=1

∞⋃
n=1

(
ai, bi − 1

n

]
.

Each (ai, bi − 1/n] ∈ P and so A is contained in any σ-field containing P , in
particular B(P). Hence U ⊆ B(P).

(ii) Given any A ∈ P we can write

A = (a, b] for some a and b,

=
∞⋂

n=1

(
a, b +

1

n

)
.
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Each (a, b + 1/n) ∈ U and, since σ-fields are closed under countable in-
tersections, A lies in any σ-field containing U , in particular, B(U). Hence
P ⊆ B(U).

(iii) Part (i) tells us that B(P) is a σ-field containing U . But B(U) is the
minimal σ-field containing U . Hence B(U) ⊆ B(P). Similarly part (ii) implies
B(P) ⊆ B(U). Hence B(P) = B(U). ¥
* Note For a collection of subsets A of a set X the σ-field generated by A
need not contain the topology generated by A. This is because topologies
contain possibly uncountable unions. Exceptionally, the usual topology, U ,
in R is made up from countable unions of intervals, (a, b), by Corollary 1.5.
Hence any σ-field containing all intervals (a, b) must also contain U . The
proof of Corollary 1.5 depends essentially on Lindelöf’s Lemma, Theorem
1.4, and if we look at the proof of Theorem 1.4 we see that the result depends
on the existence of a countably dense subset of R, namely Q.
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