
Appendix to Notes 9

Complete Product Spaces
An important application of Fubini’s Theorem is in the case (X,F , µ)

= (Y,G, ν) = (R,L, ν), when we can define a product measure on L ∗ L and
express integrals with respect to the product measure in term of iterated
integrals.

Yet there is an alternative way of constructing a measure on R2:

We can look at P2 = {(a, b] × (c, d]} with the set function µ2 giving the
area of these figures.

We can show that µ2 is σ-additive on P2 (c.f. Theorem 2.1).
Then µ2 can be extended to E2 = R(P2) (c.f. Corollary 2.3).
The outer measure µ∗2 can be defined on all subsets of R2 (c.f. Theorem

2.4).
The set of µ∗2-measurable sets L2 is defined and on which the restriction

of µ∗2, denoted by µ2 again, is a measure (c.f. Example 8 in section 2.5).
In this way we get a measure space (R2,L2, µ2).
The two measure spaces (R× R,L ∗ L) and (R2,L2) are different as can

be seen from

Example 1 L ∗ L 6= L2.

Verification Let T ⊆ [0, 1] be a non-measurable set, so T /∈ L. Consider
T × {0} ⊆ R2.

Note that T×{0} /∈ L∗L for if it were then, by Theorem 5.2, (T×{0})y ∈
L for all y, and in particular when y = 0, we get T ∈ L, a contradiction.

But [0, 1] × {0} ∈ L2, µ2([0, 1] × {0}) = 0 and L2 is complete, being
derived from an outer measure. So all subsets of [0, 1]× {0} are in L2, that
is, T × {0} ∈ L2. ¥

This example shows, in particular, that L ∗ L is not complete.

Claim B(P2) ⊆ L ∗ L ⊆ L2

Proof of claim If C ∈ P2, so C = (a, b] × (c, d], then C ∈ L × L, i.e.
P2 ⊆ L × L. Thus the smallest σ-field containing P2 is contained in the
smallest containing L × L, that is, B(P2) ⊆ L ∗ L.

Given D×E ∈ L×L write D×E = (D×R)∩ (R×E). From Theorem
2 of Appendix 3 we have that D ∈ L means there exist P,Q ∈ B, the Borel
sets, with P ⊆ D ⊆ Q and µ(Q \ P ) = 0. But then P × R, Q × R ∈ B2

with P × R ⊆ D × R ⊆ Q × R and µ2(Q × R \ P × R) = 0. So by
Theorem 2 again, we deduce that D × R ∈L2. Similarly for R × E and so
D × E = (D × R) ∩ (R× E)L2. Thus L × L ⊆ L2. In words L2 is a σ-field
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containing L×L while L∗L is the minimal σ-field containing L×L. Hence
L ∗ L ⊆ L2. ¥

By Theorem 2 of Appendix 3 we have L2 = B(P2) (see also Example A
of that appendix). Hence since, by the claim, L ∗ L is stuck in the middle,
we must have that L2 is the completion of L∗L. So we can write L2 = L ∗ L
and µ2 = µ× µ.

These observation can be made in general. Let (X,F , µ) and (Y,G, ν) be
complete measure spaces. Choose A ∈ F , A 6= φ with µ(A) = 0. Choose
B ⊆ Y with B /∈ G. Then A × B ⊆ A × Y , µ ∗ ν(A × Y ) = 0 but, from
Theorem 5.2, A×B /∈ F ∗G Hence, F ∗G is not complete. We can complete
the space (X × Y,F ∗ G, µ ∗ ν) in the manner described in Appendix 3, to
get (X × Y,F ∗ G , µ ∗ ν), using the same notation for the measure on the
completed σ-field.

We would like an extension for Fubini’s Theorem that deals with functions
g : X × Y → R∗ that are F ∗ G -measurable (this increases the collection of
applicable functions). Recall from Lemma 3 of section 3 that g = f +h where
f is F ∗G-measurable and h = 0 a.e.(λ) (where λ = µ∗ν). So

∫
gdλ =

∫
fdλ

and we can apply Fubini’s theorem to this integral over f . We want to write
our results in terms of g so we need to know something about hx and hy.

Lemma Let h : X × Y → R∗ be an F ∗ G -measurable function such that
h = 0 a.e.(µ ∗ ν).

Then for almost all x we have h(x, y) = 0 for almost all y. In particular
hx is G-measurable.

Similarly for hy.

Proof Let

P = {(x, y) ∈ X × Y : h(x, y) 6= 0}.
So P ∈ F ∗ G and µ ∗ ν(P ) = 0. By completion there exists Q ∈ F ∗ G

such that P ⊆ Q and µ∗ν(Q) = 0. By the definition of µ∗ν this means that

∫

X

ν(Qx)dµ = 0.

Since ν(Qx) ≥ 0 we have that ν(Qx) = 0 a.e.(µ). Thus we have Px ⊆ Qx,
subsets in the complete space (Y,G, ν). Hence Px ∈ G a.e.(µ) and ν(Px) = 0
a.e.(µ), which is, ν({y ∈ Y : hx(y) 6= 0}) = 0. ¥

Returning to our extension of Fubini’s Theorem we apply the known result
to f and then rewrite the resulting iterated integrals over gx and gy since the
lemma says that the iterated integrals over hx and hy are zero. Thus
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Theorem Let (X,F , µ) and (Y,G, ν) be complete σ-finite measure spaces.
Let g : X×Y → R∗ be an F ∗ G -measurable function. Then all conclusions of
Theorem 5.4 hold with the following differences. That gx is only G-measurable
a.e.(µ), so α(x) is only defined a.e.(µ).
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