Appendix to Notes 8 (b)

Spaces of Integrable functions

Definition On a vector space V over \mathbb{R} a norm is a function $\|\|:. V \rightarrow \mathbb{R}$ satisfying, for all $x, y \in V$,
(i) $\|x\| \geq 0$ and equals 0 if, and only if, $x=0$,
(ii) $\|a x\|=|a|\|x\|$ for all real numbers a,
(iii) $\|x+y\| \leq\|x\|+\|y\|$.

Define

$$
L^{1}(\mu)=\left\{f: \int_{X}|f| d \mu<\infty\right\} \quad \text { with } \quad\|f\|_{1}=\int_{X}|f| d \mu
$$

and, in general,

$$
L^{p}(\mu)=\left\{f: \int_{X}|f|^{p} d \mu<\infty\right\} \quad \text { with } \quad\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

as subsets of all measurable functions.
We have to first check that these spaces are vector spaces over \mathbb{R}, only then can we check if the $\|.\|_{1}$ and $\|.\|_{p}$ are norms. So we have to check that if f, g are from our set and $a, b \in \mathbb{R}$ then $a f+b g$ is in our set. That $L^{1}(\mu)$ is a vector space follows from

$$
|a f+b g| \leq|a||f|+|b||g| .
$$

In general we use

$$
\begin{aligned}
|a f+b g|^{p} & \leq(|a||f|+|b||g|)^{p} \\
& \leq \begin{cases}(2|a||f|)^{p} & \text { if } \quad|a||f| \geq|b||g| \\
(2|b||g|)^{p} & \text { if }|b \| g| \geq|a||f|\end{cases} \\
& =2^{p} \max \left((|a||f|)^{p},(|b||g|)^{p}\right) \\
& \leq 2^{p}\left((|a||f|)^{p}+(|b||g|)^{p}\right) .
\end{aligned}
$$

So if $f, g \in L^{p}(\mu)$ then

$$
\int_{X}|a f+b g|^{p} d \mu \leq 2^{p}\left(|a|^{p} \int_{X}|f|^{p} d \mu+|b|^{p} \int_{X}|g|^{p} d \mu\right)<\infty
$$

and so $a f+b g \in L^{p}(\mu)$.

In fact we have to look upon $L^{p}(\mu)$ as spaces of equivalence classes where the relation is given by $f \sim g$ when $f=g$ a.e. (μ) on X. Of course, if $\|f\|_{1}=0$ or $\|f\|_{p}=0$ then $f=0$ a.e. (μ), but the set of all such f is an equivalence class and thus just one element in this interpretation of $L^{1}(\mu)$ and $L^{p}(\mu)$. This was exactly what was reuired for a norm function. So it is not meaningful, when considering a "function" from $L^{1}(\mu)$ or $L^{p}(\mu)$, to ask for the value of that function at a given point. We only ever deal with a representative of an equivalence class and we can change the representative on a set of measure zero if and when necessary. Part (ii) of the definition of a norm function is obviously satisfied for $\|.\|_{1}$ and $\|.\|_{p}$ so we just have to check part (iii).
Lemma 1 For reals $a, b>0$ and $0<t<1$ we have

$$
a^{t} b^{1-t} \leq t a+(1-t) b
$$

Proof

If $w>1$ and $t<1$ then

$$
\begin{align*}
w^{t}-1^{t} & =\int_{1}^{w} d\left(x^{t}\right)=t \int_{1}^{w} x^{t-1} d x \\
& \leq t \int_{1}^{w} d x=t(w-1) \tag{1}
\end{align*}
$$

If $a>b$ set $w=a / b$ to get

$$
\left(\frac{a}{b}\right)^{t}-1 \leq t\left(\frac{a}{b}-1\right)
$$

so

$$
a^{t} b^{1-t} \leq t a+(1-t) b
$$

If $b \geq a$ use $w^{1-t}-1 \leq(1-t)(w-1)$ which follows from (1) on replacing t by $1-t$, valid since $1-t<1$.
Lemma 2 Let $1 \leq p<\infty$ and set $1 / q=1-1 / p$. If $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$ then $f g \in L^{1}(\mu)$ and

$$
\|f g\|_{1}=\int_{X}\left|f\|g \mid d \mu \leq\| f\left\|_{p}\right\| g \|_{q}\right.
$$

Proof Apply Lemma 1 with

$$
a=\frac{|f|^{p}}{\|f\|_{p}^{p}} \text { and } b=\frac{|g|^{q}}{\|g\|_{q}^{q}}
$$

and $t=1 / p$. Then

$$
\frac{|f|}{\|f\|_{p}} \frac{|g|}{\|g\|_{q}} \leq \frac{|f|^{p}}{p\|f\|_{p}^{p}}+\frac{|g|^{q}}{q\|g\|_{q}^{q}}
$$

Integrate over X to get

$$
\begin{aligned}
\frac{1}{\|f\|_{p}\|g\|_{q}} \int_{X}|f \| g| d \mu & \leq \frac{1}{p\|f\|_{p}^{p}} \int_{X}|f|^{p} d \mu+\frac{1}{q\|g\|_{q}^{q}} \int_{X}|g|^{q} d \mu \\
& =\frac{\|f\|_{p}^{p}}{p\|f\|_{p}^{p}}+\frac{\|g\|_{q}^{q}}{q\|g\|_{q}^{q}} \\
& =\frac{1}{p}+\frac{1}{q}=1
\end{aligned}
$$

Lemma 3 If $f, g \in L^{p}(\mu)$ then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} .
$$

Proof By first applying the triangle inequality

$$
\begin{aligned}
\int_{X}|f+g|^{p} d \mu \leq & \int_{X}|f||f+g|^{p-1} d \mu+\int_{X}|g||f+g|^{p-1} d \mu \\
\leq & \left(\int_{X}|f|^{p} d \mu\right)^{1 / p}\left(\int_{X}\left(|f+g|^{p-1}\right)^{q} d \mu\right)^{1 / q} \\
& +\left(\int_{X}|g|^{p} d \mu\right)^{1 / p}\left(\int_{X}\left(|f+g|^{p-1}\right)^{q} d \mu\right)^{1 / q} \\
= & \left(\|f\|_{p}+\|g\|_{p}\right)\left(\int_{X}|f+g|^{p} d \mu\right)^{1 / q} \text { since } q(p-1)=p
\end{aligned}
$$

Hence, on rearranging,

$$
\left(\int_{X}|f+g|^{p} d \mu\right)^{1-1 / q} \leq\|f\|_{p}+\|g\|_{p}
$$

and the left hand side equals $\|f+g\|_{p}$ since $1-1 / q=1 / p$.
Definition Let $(V,\|\|$.$) be a normed space. A Cauchy sequence \left\{x_{n}\right\}$ satisfies

$$
\forall \varepsilon>0, \exists N \geq 1, \forall m, n \geq N,\left|x_{m}-x_{n}\right|<\varepsilon
$$

We say that $(V,\|\|$.$) is complete if every Cauchy sequence is convergent.$

It can be shown that \mathbb{R} with the usual distance function is complete.
Theorem 1

$$
L^{1}(\mu) \text { is complete. }
$$

Proof

Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $L^{1}(\mu)$. We need show that $\lim _{n \rightarrow \infty} f_{n}$ exists and, calling it f, that $f \in L^{1}(\mu)$ and $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.

By definition of a Cauchy sequence we have that, for all $\varepsilon>0$ there exists N such that $\left\|f_{m}-f_{n}\right\|_{1}<\varepsilon$ for all $m, n \geq N$. We will apply this with a sequence of ε_{k} such that $\sum_{k} \varepsilon_{k}<\infty$. In particular, $\varepsilon_{k}=1 / 4^{k}$. So there exists N_{k} such that $\left\|f_{m}-f_{n}\right\|_{1}<1 / 4^{k}$ for all $m, n \geq N_{k}$. And we can ensure that $N_{1}<N_{2}<N_{3}<\ldots$.

Set $g_{k}=f_{N_{k}}$, so $\left\|g_{m}-g_{n}\right\|_{1}<1 / 4^{n}$ for all $m \geq n$. In particular

$$
\int_{X}\left|g_{m}-g_{n}\right| d \mu<1 / 4^{n}
$$

Thus $g_{m}-g_{n}$ is small on average. Though it can be large it cannot be large for too many x. (This is the idea behind the Chebychev inequality.)
Claim $\lim _{n \rightarrow \infty} g_{n}$ exists a.e. (μ).
The idea is to write $h_{k}=g_{k}-g_{k-1}$ with $h_{1}=g_{1}$ so that $g_{k}=\sum_{j=1}^{k} h_{j}$. The hope then is to find a sequence of sets $E_{1} \supseteq E_{2} \supseteq E_{3} \supseteq \ldots$ such that outside each E_{n} the series $\sum_{j=1}^{\infty} h_{j}$ converges. The proof of convergence is by the comparison test. We will find that the smaller we take E_{n} the larger we have to take the comparing series. (This just represents the fact that the convergence of the series need not be uniform across X.) Nonetheless we hope that $\mu\left(\bigcap_{n \geq 1} E_{n}\right)=0$ so that we get convergence a.e. (μ).

Let $n \geq 1$ be given. Define

$$
\begin{aligned}
E_{n} & =\left\{x:\left|h_{j}(x)\right|>\frac{n}{2^{j}} \text { for some } j \geq 1\right\} \\
& =\left\{x:\left|g_{j}(x)-g_{j-1}(x)\right|>\frac{n}{2^{j}} \text { for some } j \geq 1\right\} \\
& =\bigcup_{j \geq 1}\left\{x:\left|g_{j}(x)-g_{j-1}(x)\right|>\frac{n}{2^{j}}\right\} \\
& =\bigcup_{j \geq 1} E_{n, j}, \text { say. }
\end{aligned}
$$

Then $\mu\left(E_{n}\right) \leq \sum_{j \geq 1} \mu\left(E_{n, j}\right)$ and

$$
\begin{aligned}
\frac{n}{2^{j}} \mu\left(E_{n, j}\right) & \leq \int_{E_{n, j}}\left|g_{j}-g_{j-1}\right| d \mu \\
& \leq \int_{X}\left|g_{j}-g_{j-1}\right| d \mu \\
& <\frac{1}{4^{j-1}} .
\end{aligned}
$$

Hence $\mu\left(E_{n, j}\right) \leq 4 / 2^{j} n$ and so $\mu\left(E_{n}\right) \leq \sum_{j \geq 1} 4 / 2^{j} n=4 / n$. Thus $\mu\left(\left(\bigcap_{n \geq 1} E_{n}\right)=\right.$ 0.

So, for all $x \notin E_{n}$ we have $\left|h_{j}(x)\right| \leq n / 2^{j}$ for all j in which case $\mid g_{k}(x)-$ $g_{l}(x) \mid<n / 2^{l}$ for all $k \geq l$. The sequence $\left\{g_{k}(x)\right\}_{k}$ is a Cauchy sequence in \mathbb{R} and so converges. Hence for all $x \notin \bigcap_{n \geq 1} E_{n}$ we have that $\left\{g_{k}(x)\right\}_{k}$ converges, that is $\left\{g_{k}\right\}_{k}$ converges a.e. (μ) on \bar{X}.

Let $E=\bigcap_{n \geq 1} E_{n}$. Define

$$
f(x)= \begin{cases}\lim _{k \rightarrow \infty} g_{k}(x) & \text { for } x \in X \backslash E \\ 0 & \text { for } x \in E\end{cases}
$$

Then go back, and for each f_{n} choose a function from the same equivalence class that is zero on E (possible since $\mu(E)=0$) and relabel as f_{n}. Hence $f(x)=\lim _{k \rightarrow \infty} g_{k}(x)=\lim _{k \rightarrow \infty} f_{N_{k}}(x)$ for all $x \in X$. Though we have found pointwise limit for a subsequence of $\left\{f_{n}\right\}$ it would be too much to expect that f would be the pointwise limit of the sequence $\left\{f_{n}\right\}$. Yet we should be able to show that f is the limit "on average", i.e. that $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. Before we do this we need know that we can calculate $\left\|f_{n}-f\right\|_{1}$, that is, we need to know that $f \in L^{1}(\mu)$

Define $h=\sum_{k \geq 1}\left|h_{k}\right|$ which converges for all $x \notin E$. Define $h_{k}(x)=0$ for $x \in E$ for all $k \geq 1$. So then the series converges for all x. Then, by the Monotonic Convergence Theorem,

$$
\begin{aligned}
\int_{X} h d \mu & =\sum_{k \geq 1} \int_{X}\left|h_{k}\right| d \mu \\
& =\int_{X}\left|f_{1}\right| d \mu+\sum_{k \geq 2} \int_{X}\left|g_{k}-g_{k-1}\right| d \mu \\
& \leq\left\|f_{1}\right\|_{1}+\sum_{k \geq 2} \frac{1}{4^{k-1}} \\
& =\left\|f_{1}\right\|_{1}+C, \text { say, which is finite. }
\end{aligned}
$$

Hence h is integrable. Note that for each $k \geq 1$ we have

$$
\left|g_{k}\right|=\left|\sum_{j=1}^{k} h_{j}\right| \leq \sum_{j=1}^{k}\left|h_{j}\right| \leq h
$$

and so

$$
|f|=\lim _{k \rightarrow \infty}\left|g_{k}\right| \leq h .
$$

Theus we have, by Corollary 4.18, that f is integrable, i.e. $f \in L^{1}(\mu)$.
Next

$$
\left|g_{k}-f\right| \leq\left|g_{k}\right|+|f| \leq 2 h .
$$

So by the dominated convergence theorem,

$$
\lim _{k \rightarrow \infty} \int_{X}\left|g_{k}-f\right| d \mu=\int_{X} \lim _{k \rightarrow \infty}\left|g_{k}-f\right| d \mu=0
$$

that is, $\lim _{k \rightarrow \infty}\left\|g_{k}-f\right\|_{1}=0$.
Finally let $\varepsilon>0$ be given. We are told that $\left\{f_{n}\right\}$ is a Cauchy sequence so we can find N such that $\left\|f_{n}-f_{m}\right\|_{1}<\varepsilon$ for all $n, m>N$. So for $N_{k}>N$ we have $\left\|f_{N_{k}}-f_{m}\right\|_{1}<\varepsilon$ that is $\left\|g_{k}-f_{m}\right\|_{1}<\varepsilon$. Let $k \rightarrow \infty$ to deduce $\left\|f-f_{m}\right\|_{1}<\varepsilon$. True for all $m>N$ means that $\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{1}=0$ as required.

Theorem 2

$$
L^{p}(\mu) \text { is complete. }
$$

Proof We can use the method of proof above but here we give an alternative proof.

Given a Cauchy sequence $\left\{f_{n}\right\}$ in $L^{p}(\mu)$ we can find a subsequence such that

$$
\left\|f_{n_{i+1}}-f_{n_{i}}\right\|_{p}<\frac{1}{2^{i}}
$$

for all $i \geq 1$. Let

$$
g_{k}=\sum_{i=1}^{k}\left(f_{n_{i+1}}-f_{n_{i}}\right) .
$$

Then, by the triangle inequality for norms,

$$
\begin{aligned}
\left\|g_{k}\right\|_{p} & \leq \sum_{i=1}^{k}\left\|f_{n_{i+1}}-f\right\|_{p} \\
& \leq \sum_{i=1}^{k} \frac{1}{2^{i}} \leq 1
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|g\|_{p}^{p} & =\int_{X}|g|^{p} d \mu=\int_{X} \lim _{k \rightarrow \infty}\left|g_{k}\right|^{p} d \mu \\
& \leq \liminf _{k \rightarrow \infty} \int_{X}\left|g_{k}\right|^{p} d \mu \quad \text { by Fatou's lemma } \\
& \leq 1, \quad \text { by above. }
\end{aligned}
$$

In particular, g is finite a.e. (μ) on X. Let $f=g$ where g is defined, 0 elsewhere and go back and choose f_{n} so that they too are zero where g is not defined.

Let $\varepsilon>0$ be given. Then there exists N such that $\left\|f_{n}-f_{m}\right\|_{p}<\varepsilon$ for all $m, n \geq N$. Choose such an m. Then

$$
\begin{aligned}
\int_{X}\left|f-f_{m}\right|^{p} d \mu & =\int_{X} \lim _{i \rightarrow \infty}\left|f_{n_{i}}-f_{m}\right|^{p} d \mu \\
& \leq \liminf _{i \rightarrow \infty} \int_{X}\left|f_{n_{i}}-f_{m}\right|^{p} d \mu, \quad \text { by Fatou's lemma } \\
& \leq \varepsilon^{p}
\end{aligned}
$$

In particular, $f-f_{m} \in L^{p}(\mu)$. But we know that $f_{m} \in L^{p}(\mu)$ hence $f \in L^{p}(\mu)$. Also, given $\varepsilon>0$ we have found an N such that $\left\|f-f_{m}\right\|_{p} \leq \varepsilon$ for all $m \geq N$. Hence $\lim _{m \rightarrow \infty}\left\|f-f_{m}\right\|_{p}=0$.

