
Appendix to Notes 8 (a)

13 Comparison of the Riemann and Lebesgue integrals.

Recall Let f : [a, b] → R be bounded. Let D be a partition of [a, b] such
that

D = {a = x0 < x1 < ... < xn = b}.
Let

mi = inf{f(x) : xi−1 ≤ x ≤ xi}
Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.

Define the step functions (therefore, simple functions, since we have as-
sumed that f is bounded and so Mi < ∞ for all i).

αD(x) = mi on [xi−1, xi) for all 1 ≤ i ≤ n,

and

βD(x) = Mi on [xi−1, xi) for all 1 ≤ i ≤ n.

So

αD(x) ≤ f(x) ≤ βD(x) for all x ∈ [a, b].

Note that if D ⊇ D′ then αD′(x) ≤ αD(x) and βD(x) ≤ βD′(x). That is,
with a finer partition we get better approximations to f . With the notation
of integrals of simple functions we have, with Lebesgue measure on R,

I(αD) =
n∑

i=1

mi(xi − xi−1) and I(βD) =
n∑

i=1

Mi(xi − xi−1),

which are normally known as L(D, f) and U(D, f) in the theory of Riemann
integration. Then we obviously have I(αD) ≤ I(βD) for all D, and if D ⊇ D′

then I(αD′) ≤ I(αD) and I(βD) ≤ I(βD′). Let

∫ b

a

f(x)dx = sup
D

I(αD) and

∫ b

a

f(x)dx = inf
D

I(βD).

Then f is Riemann integrable if, and only if,

1



∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

The common value is denoted by

R-

∫ b

a

f(x)dx.

Theorem 1
If f is Riemann integrable on a finite interval [a, b] then it is Lebesgue

integrable with the same value.

Proof For each n ≥ 1 we can find, by the definition of supremum, a partition
Dα

n such that

0 ≤
∫ b

a

f(x)dx− I(αDα
n
) <

1

n
,

when, in particular,

I(αDα
n
) →

∫ b

a

f(x)dx as n →∞.

Similarly choose a sequence of partitions Dβ
n such that

I(βDβ
n
) →

∫ b

a

f(x)dx as n →∞.

Set Dn = Dα
n ∪Dβ

n then

I(αDα
n
) ≤ I(αDn) ≤

∫ b

a

f(x)dx

and

I(βDβ
n
) ≥ I(βDn

) ≥
∫ b

a

f(x)dx.

Thus

I(αDn) →
∫ b

a

f(x)dx and I(βDn
) →

∫ b

a

f(x)dx as n →∞. (1)
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Replacing the sequence D1, D2, D3, .... by D1, D1 ∪D2, D1 ∪D2 ∪D3, ....and
relabeling we can assume that Dn ⊆ Dn+1 for all n ≥ 1 while (1) still holds.
Yet Dn ⊆ Dn+1 means that

αDn(x) ≤ αDn+1(x) and βDn
(x) ≥ βDn+1

(x) for all n and x.

In particular {αDn}n≥1 in an increasing sequence bounded above by f . So
limn→∞ αDn = g exists, and satisfies g ≤ f . Similarly {βDn

}n≥1 in an de-
creasing sequence bounded below by f . So limn→∞ βDn

= h exists, and
satisfies h ≥ f .

Now {αDn − αD1}n≥1 is an increasing sequence of non-negative simple
F -measurable functions tending to g − αD1 . So by Lebesgue’s Monotone
Convergence Theorem we have

L-

∫ b

a

(g − αD1)dµ = lim I(αDn − αD1)

= lim I(αDn)− I(αD1)

=

∫ b

a

f(x)dx− I(αD1).

Since αD1 is a simple function we have L-
∫ b

a
αD1dµ = I(αD1) and so

L-

∫ b

a

gdµ =

∫ b

a

f(x)dx. (2)

Similarly, by examining βD1
− βDn

we find that

L-

∫ b

a

hdµ =

∫ b

a

f(x)dx.

So, if f is Riemann integrable, that is,
∫ b

a
f(x)dx =

∫ b

a
f(x)dx, then L

∫ b

a
(g −

h)dµ = 0. Yet h − g ≥ 0, so h = g a.e.(µ) on [a, b]. But g ≤ f ≤ h and so
f = g a.e.(µ) on [a, b]. Hence

L-

∫ b

a

fdµ = L-

∫ b

a

gdµ since f = g a.e.(µ) on [a, b]

=

∫ b

a

f(x)dx by (2)

= R-

∫ b

a

f(x)dx since f is Riemann integrable
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¥
Let ∆(D) = max1≤i≤n(xi − xi−1). In Theorem 1 it is possible, by adding

extra points to each of the partitions Dn, to assume that ∆(Dn) → 0 as
n →∞. With the notation and assumptions of Theorem 1 we can prove

Lemma 1
Assume that ∆(Dn) → 0 as n →∞. Then for any x /∈ ⋃∞

k=1 Dk we have
that f is continuous at x if, and only if, g(x) = f(x) = h(x).

Proof Recall that f is continuous at x if, and only if,

∀ε > 0 ∃δ > 0 : ∀y if |y − x| < δ then |f(y)− f(x)| < ε. (3)

For each k let Ik be the subinterval of Dk containing x. This is unique
since x /∈ ⋃∞

k=1 Dk. Write Ik = [xi−1, xi].

(⇒) Let ε > 0 be given. From (D6) we find a δ > 0. Since ∆(Dn) → 0 as
n → ∞ there exists N such ∆(Dn) < δ for all n ≥ N . Then `(Ik) < δ so
if y ∈ Ik we have that |y − x| < δ. In which case, from (D6) we get that
|f(y)− f(x)| < ε. In turn this means that we have both

∣∣∣∣inf
Ik

f(y)− f(x)

∣∣∣∣ < ε and

∣∣∣∣sup
Ik

f(y)− f(x)

∣∣∣∣ < ε.

Yet infIk
f(y) and supIk

f(y) are the values of αk and βk at x. Hence,
combining the inequalities, |βk(x) − αk(x)| < 2ε. Let k → ∞ to deduce
|h(x)− g(x)| < 2ε. True for all ε > 0 gives h(x) = g(x).

(⇐) Assume f is not continuous at x. So

∃ε > 0 ∀δ > 0 : ∃y with |y − x| < δ and |f(y)− f(x)| ≥ ε. (4)

For each k ≥ 1 choose δk = min(x− xi−1, xi− x) so (x− δk, x + δk) ⊆ Ik.
But then by (4) we can find yk ∈ (x−δk, x+δk) such that |f(yk)−f(x)| ≥ ε.
In particular,

sup
Ik

f − inf
Ik

f ≥ ε,

in which case βk(x)− αk(x) ≥ ε and h(x)− g(x) ≥ ε. Hence h(x) 6= g(x).¥
This leads to

Theorem 2
Assume f : [a, b] → R is bounded. Then f is Riemann integrable if, and

only if, f is continuous a.e.(µ) on [a, b].
Proof Choose a sequence of partitions, Dk, as in Lemma 1. Then.
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f is continuous a.e.(µ) on [a, b]

iff f is continuous a.e.(µ) outside
⋃

k
Dk on [a, b]

iff g = h a.e.(µ) on [a, b] by Lemma 1,

iff

∫
gdµ =

∫
hdµ

iff

∫ b

a

f(x)dx =

∫ b

a

f(x)dx

iff f is Riemann integrable.

¥

Measure preserving Transformations
These are a special case of measurable functions.

Definition T : (X,F , µ) → (X,F , µ) is a measure preserving transformation
if

(i) T−1A ∈ F for all A ∈ F ,
(ii) µ(T−1A) = µ(A) for all A ∈ F .

Definition Let A ∈ F . A point x ∈ A is said to be recurrent with respect to
A if there exists a k ≥ 1 such that T kx ∈ A.

Theorem 3 Poincare’s Recurrence Theorem
Assume that µ(X) < ∞. Let F be the set of points of A which are not

recurrent with respect to A. Then µ(F ) = 0.
(So for every A ∈ F , almost all points of A are recurrent.)

Proof
Let x ∈ F . If there exists n ≥ 1 such that T nx ∈ F then we have both

x ∈ F ⊆ A and T nx ∈ F ⊆ A, i.e. x is a recurrent point with respect to
A, which contradicts the definition of F . So T nx /∈ F for all n ≥ 1, that is,
T nF ∩ F = ∅ for all n ≥ 1. Now, the preimage of an empty set is empty, so
given any k, n ≥ 1 we have

∅ = T−k−n(T nF ∩ F ) = T−kF ∩ T−(n+k)F.

Hence the sets F, T−1F, T−2F, ... are pairwise disjoint. So
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∞ > µ(X) ≥ µ

(⋃

k≥0

T−kF

)

=
∞∑

k=0

µ(T−kF )

=
∞∑

k=0

µ(F ) by part (ii) of definition.

Hence µ(F ) = 0. ¥
We can ask how long it takes a point x ∈ A to wander back into A. To

this end define

nA(x) = min{n ≥ 1 : T nx ∈ A}.
Assume throughout the rest of this section that µ(X) = 1.

Definition A measure preserving map T : X → X is Ergodic if either of the
following hold.

(i) Whenever A ∈ F is such that µ(T−1A4A) = 0 then either µ(A) = 0
or 1.

(ii) Whenever an integrable function f satisfies f(Tx) = f(x) for a.e. (µ)
x in X then f is constant a.e.(µ) on X.

The first definition here means that if T−1A is almost exactly A then
either µ(A) = 0 or 1. So if 0 < µ(A) < 1 then T−1A must differ “quite a lot”
from A. We say that T is mixing up the space.

We do not prove here that (i) and (ii) are equivalent.

It can be shown that if T is ergodic then

∫

A

nAdµ = 1.

Since
∫

A
dµ = µ(A) we have, that in some sense, nA is of size 1/µ(A). This

is connected with the question of how often a point x ∈ X will wander into
the set A ∈ F . It will be shown below that for B ∈ F and T ergodic,

lim
n→∞

1

n

n−1∑

k=0

χB(T kx) = µ(B) a.e. (µ), (5)

where χB is the characteristic function of the set B, i.e. χB(x) = 1 if x ∈ B,
0 otherwise. So if µ(B) > 0 then almost every point of X wanders into B
infinitely often.
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Let Sn(x) = #{1 ≤ i ≤ n : T ix ∈ B} and An(x) = Sn(x)/n. It is
not obvious that the limit limn→∞An(x) will exist. We will show that it
does by looking at the limsup and liminf of the sequence {An(x)}. So let
A(x) = lim sup An(x) which is trivially ≤ 1.

Lemma 2 Let {an} be a sequence for which lim sup an < ∞. Let {bn} be a
sequence for which lim bn = 0. Then lim sup(an + bn) = lim sup an.

Proof Write A = lim sup an.
Let ε > 0 be given. There exists N1 such that −ε < bn < ε for all n ≥ N1

and there exists N2 such that

A− ε < sup
r≥n

ar < A + ε

for all n ≥ N2. Choose N = max(N1, N2), so that for all n ≥ N we have

A− 2ε < sup
r≥n

(ar + br) < A + 2ε

which gives the result. ¥
Lemma 3

A(Tx) = A(x).

Proof

An(Tx) =
1

n

∑
1≤i≤n

χB(T i(Tx)) =
1

n

∑
2≤i≤n+1

χB(T ix)

= An(x) +
χB(x)− χB(T n+1x)

n

and an application of Lemma 2 gives the result. ¥
Theorem 4

The limit lim
n→∞

An(x) exists .

Proof
For a given x ∈ X we follow the orbit of x, namely x, Tx, T 2x, T 3x,... .

We call the exponent n in T nx, the time.
Let ε > 0 be given.
It might be that for all sufficiently large n we have An(x) > A(x) − ε

which obviously shows that the limit exists. Otherwise the sequence {mj}
defined by

7



mj = min{m > mj−1 : Am(x) > A(x)− ε}
has infinitely many gaps. Note that this sequence depends on x. The question
must be how large can these gaps be?

Define

τ(x) = min{n : An(x) > A(x)− ε}.
We first assume that there exists M such that τ(x) < M a.e. (µ). Let S

be the exceptional set here.
Assume there is a gap after mj so Amj

(x) > A(x) − ε but Amj+1(x) ≤
A(x) − ε. Then if Tmjx /∈ S we know there exists n < M such that
An(Tmjx) > A(Tmjx) − ε = A(x) − ε by the lemma above. So we have
both

∑
1≤i≤mj

χB(T ix) > mj(A(x)− ε)

and

∑
mj+1≤i≤mj+n

χB(T ix) =
∑

1≤i≤n

χB(T i(Tmjx)) > n(A(x)− ε).

Adding these two inequalities gives

∑
1≤i≤mj+n

χB(T ix) > (mj + n)(A(x)− ε),

that is

Amj+n(x) > A(x)− ε.

Thus mj+1 ≤ mj + n < mj + M . So if Tmjx /∈ S, the gap mj+1 −mj is less
than M . So if

x /∈
∞⋃

k=1

T−kS

a set of measure zero, all the gaps are less than M . Thus given x /∈ ⋃∞
k=1 T−kS

and given N choose j (which will depend on x as well N since the sequence
of mj depends on x) such that mj ≤ N < mj+1, then for almost all x we
have
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SN(x) ≥ Smj
(x) > mj(A(x)− ε)

> (N −M)(A(x)− ε).

Since this inequality is true for almost all x we can integrate to get

∫

X

(A(x)− ε)dµ ≤ 1

N −M

∑
n≤N

∫

X

χT−nBdµ

=
1

N −M

∑
n≤N

µ(T−nB)

=
Nµ(B)

N −M
,

since T is measure preserving. Let N →∞ and then ε → 0 to deduce

∫

X

A(x)dµ ≤ µ(B). (6)

The assumption above concerning M may not hold. Define SM = {x :
τ(x) > M}, the collection of which is a nested sequence of sets, S1 ⊇ S2 ⊇
S3 ⊇ .... From the definition of lim sup An(x) we know that given ε > 0 and
x ∈ X there exists (infinitely many) N such that AN(x) > A(x)− ε in which
case τ(x) ≤ N and so x /∈ SN . Let S∗ =

⋂
M≥1 SM , then we have seen that

x /∈ S∗ for all x ∈ X, that is, S∗ = ∅. Since the SN are nested we can thus
find an M such that µ(SM) < ε.

Let B′ = B ∪ SM . We apply the arguments above with B replaced
by B′, so S ′n(x) = #{1 ≤ i ≤ n : T ix ∈ B′}, A′

n(x) = S ′n(x)/n and
A′(x) = lim sup A′

n(x). We follow the method above looking at the gaps in

the sequence of {mj}. If after some mj we have a gap then A′
mj

(x) > A
′
(x)−ε

but A′
mj+1(x) ≤ A

′
(x) − ε, in particular A′

mj+1(x) < A′
mj

(x). If it were the

case that Tmj+1x ∈ B′ then

A′
mj+1(x) =

S ′mj
(x) + χB′(T

mj+1x)

mj + 1
=

S ′mj
(x) + 1

mj + 1

>
S ′mj

(x)

mj

= A′
mj

(x),

having used the observation that D > C > 0 implies C+1
D+1

> C
D

. Hence
we must have Tmj+1x /∈ B′. In particular Tmj+1x /∈ SM , in which case
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τ(Tmj+1x) ≤ M and so, as in the argument above, the gap after mj is
bounded by M . Thus following the argument that led to (6) will lead to

∫

X

A
′
(x)dµ ≤ µ(B′).

But A′
n(x) ≥ An(x) for all n in which case A

′
(x) ≥ A(x), while µ(B′) <

µ(B) + ε. Let ε → 0 to deduce

∫

X

A(x)dµ ≤ µ(B).

Hence this inequality holds whatever we assume about M .
A similar argument gives

µ(B) ≤
∫

X

A(x)dµ

where A(x) = lim inf An(x). Hence

∫

X

A(x)dµ =

∫

X

A(x)dµ = µ(B) (7)

and so A(x) = A(x) for a.e. (µ) x ∈ X. Hence limn→∞ An(x) exists for
almost every (µ) x ∈ X (and is integrable). ¥

The remaining question must be waht is the value of this limit?

From the definition of ergodic above the appropriate one for the present
situation states that whenever an integrable function f satisfies f(Tx) = f(x)
for a.e. (µ) x in X then f is constant a.e.(µ) on X.

From the lemma above we have that A(Tx) = A(x) for all x and so for the
points at which the limit exists we have limn→∞ An(Tx) = limn→∞ An(x), i.e.
this holds a.e.(µ) on X. Hence if T is ergodic we have that limn→∞ An(x) = c,
a constant, a.e.(µ). For the value of c use (7) that shows that

µ(B) =

∫

X

lim
n→∞

An(x)dµ =

∫

X

cdµ = cµ(X) = c,

since µ(X) = 1. Hence

lim
n→∞

#{1 ≤ i ≤ n : T ix ∈ B}
n

= µ(B)

a.e.(µ).
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