
Appendix to Notes 7

Extended version of Monotonic Convergence Theorem

From the notes recall the following important result.

Theorem 4.11 Lebesgue’s Monotone Convergence Theorem
Let 0 ≤ f1 ≤ ... ≤ fn ≤ fn+1 ≤ ... be an increasing sequence of non-

negative F -measurable functions. Let E ∈ F . Then

lim
n→∞

∫

E

fndµ =

∫

E

lim
n→∞

fndµ.

We can try to extend this Theorem. The result is often stated under
the condition that limn→∞ fn = f a.e. (µ) on E but this will follow from
Theorem 4.11 if we simply apply Corollary 4.10. We can go further. Perhaps
we only have fn ≤ fn+1 a.e.(µ) on E. That is, there exists a set An with
zero measure so that for all x ∈ X \ An we have fn(x) ≤ fn+1(x). Let
A =

⋃∞
n=1 An so that, by countable sub-additivity, µ(A) ≤ ∑∞

n=1 µ(An) = 0.
Then for all x ∈ E \ A we have

f1(x) ≤ f2(x) ≤ f3(x) ≤ ... .

So lim fn exists a.e.(µ). Let us suppose that f is an F -measurable non-
negative function defined on all of E such that on E \A we have f = lim fn

a.e.(µ). That is, there exists a set B ⊆ E \A of measure zero so that for all
x ∈ (E \ A) \B = X \ (A ∪B) we have f(x) = limn→∞ fn(x).

Theorem 1
With the conditions above, and assuming that µ is complete

lim
n→∞

∫

E

fndµ =

∫

E

fdµ.

Proof
The inequality fn ≤ fn+1 a.e.(µ) on E means that

∫
E

fndµ ≤ ∫
E

fn+1dµ
for all n so L = limn→∞

∫
E

fndµ exists, possibly infinite.

Note that for x ∈ X \ (A ∪ B) we have fn(x) ≤ limm→∞ fm(x) = f(x)
so, for every n ≥ 1, fn ≤ f a.e. (µ) on X. Thus

∫
E

fndµ ≤ ∫
E

fdµ for all n.
Hence

L ≤
∫

E

fdµ. (1)

Let 0 ≤ s ≤ f be any simple F -measurable function on E and let 0 ≤
c ≤ 1. Set En = {x ∈ E : cs(x) ≤ fn(x)}. It is not necessarily true that
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En ⊆ En+1. For instance if x ∈ En ∩ An then we will have cs(x) ≤ fn(x)
since x ∈ En and we may have fn(x) > fn+1(x) since x ∈ A. So it is possible
that cs(x) > fn+1(x) that is, x /∈ En+1. But certainly En ∩ Ac

n ⊆ En+1, so
almost all of En lies in En+1 in that En \En+1 ⊆ (En ∩An) \En+1 ⊆ An, i.e.
µ(En \ En+1) = 0. Nonetheless, we have the following:

Lemma 1 If E1, E2, E2, ... ∈ F satisfy µ(Ej \ Ej+1) = 0 for all j ≥ 1, then

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ(En).

Proof
Define Fn =

⋂
j≥n Ej. Then F1 ⊆ F2 ⊆ F3 ⊆ ... and so, by Lemma 4.1,

µ

( ∞⋃
n=1

Fn

)
= lim

n→∞
µ(Fn). (2)

Now

∞⋃
n=1

Fn =
∞⋃

n=1

⋂
j≥n

Ej ⊆
∞⋃

n=1

En.

If x ∈ ⋃∞
n=1 En then there exists k ≥ 1 such that x ∈ Ek. If x /∈ ⋃∞

n=1 Fn

then, in particular, x /∈ Fk =
⋂

j≥k Ej. So there exists j ≥ k such that x /∈ Ej

(obviously j 6= k). Let ` be the largest integer in the range k ≤ ` < j for
which x ∈ E`. Then x /∈ E`+1 and so x ∈ E` \ E`+1. Hence

( ∞⋃
n=1

En

)
\

( ∞⋃
n=1

Fn

)
⊆

∞⋃

`=1

(E` \ E`+1) .

Since the right hand side has measure zero and µ is complete we deduce that

µ

( ∞⋃
n=1

Fn

)
= µ

( ∞⋃
n=1

En

)
. (3)

Obviously Fn ⊆ En but what of En \ Fn? Similar to above, if x ∈ En

and x /∈ Fn then there exists j ≥ n such that x ∈ Ej and so x ∈ E` \ E`+1

for some n ≤ ` < j. That is, En \ Fn ⊆
⋃∞

`=1 (E` \ E`+1), so µ(En) = µ(Fn).
Combining this with (2) and (3) gives

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ(En).

¥
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Proposition 1
If s is a simple F -measurable function on

⋃∞
n=1 En, with En as in the

result above, then

lim
n→∞

IEn(s) = IS∞
n=1 En(s).

Proof Straightforward, identical to the proof of Theorem 4.2(v). ¥
We can now return to the proof of the Theorem 1. As in the proof of

Theorem 4.11 ∫

E

fndµ ≥
∫

En

fndµ

≥
∫

En

csdµ = cIEn(s). (4)

We have seen above that the sets En satisfy the conditions of Lemma 1
so we let n →∞ in (4), applying Proposition 1 and obtaining

L ≥ cI⋃∞
n=1

En

(s).

What is
⋃∞

n=1 En?

Consider x ∈ E \ (
⋃∞

n=1 En) in which case cs(x) > fn(x) for all n. If
we restrict to x ∈ E \ (A ∪ B) then x /∈ A which implies that limn→∞ fn(x)
exists, so we have that cs(x) ≥ limn→∞ fn(x). And since x /∈ B we have
limn→∞ fn(x) = f(x) and so cs(x) ≥ f(x). This is impossible since for all x
we have s(x) ≤ f(x) and c < 1. Hence

E \
( ∞⋃

n=1

En

)
⊆ A ∪B.

Since the right hand side has measure zero we conclude that

µ

( ∞⋃
n=1

En

)
= µ(E)

and

L ≥ cI
E
(s).

As in the previous version we let c → 1 to get L ≥ I
E
(s). Thus L is an upper

bound on the set of integrals of simple functions less than f . Yet
∫

E
fdµ is

the least of all such upper bounds. Hence

L ≥
∫

E

fdµ. (5)
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Combining (1) and (5) gives the required equality. ¥

Finally, you can never have too many proofs of the following result.

Example

∞∑
n=1

1

n2
=

π2

6
.

Verification Let z = r(cos x + i sin x) for 0 < r < 1.

1− r2

1− (z + z) + r2
=

1− zz

(1− z)(1− z)
=

1− z + z(1− z)

(1− z)(1− z)

=
1

(1− z)
+ z

1

(1− z)

=
∞∑

n=0

zn + z

∞∑
n=0

zn

= 1 +
∞∑

n=1

(zn + zn)

= 1 + 2
∞∑

n=1

rn cos nx.

So as in example 20 we can use Lebesgue’s Dominated Convergence Theorem
to justify

∫ b

a

f(x)
1− r2

1− 2r cos x + r2
dx =

∫ b

a

f(x)dx + 2
∞∑

n=1

rn

∫ b

a

f(x) cos nxdx,

as long as f is finite and integrable over (a, b). Apply this with f(x) = x2 to
get

∫ π

0

x2 1− r2

1− 2r cos x + r2
dx =

π3

3
+ 4π

∞∑
n=1

(−1)nrn

n2
,

having used integration by parts to evaluate the integrals.
We next try to bound

1 + r

1− 2r cos x + r2
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from above. For π/2 ≤ x ≤ π we have cos x ≤ 0 and so 1 − 2r cos x + r2 ≥
1 + r2 in which case

1 + r

1− 2r cos x + r2
≤ 1 + r

1 + r2
≤
√

2 + 1

2
,

the maximum value being attained at r =
√

2− 1. For 0 ≤ x ≤ π/2 use the
inequality

cos x ≤ 1− 4

π2
x2.

(The coefficient 4/π2 is chosen such that the left hand side equals the right
hand side at both x = 0 and x = π/2. I leave it to the student to check that
the inequality holds in the interval between but note that when x = π/4 the
left hand side equals 1/

√
2 which is less than the value of the right hand side,

3/4.) Thus

1− 2r cos x + r2 ≥ 1− 2r

(
1− 4

π2
x2

)
+ r2

= (1− r)2 +
8rx2

π2

≥ 8rx2

π2

which is a little weak when r is small but we are interested in r near 1. So
for 0 ≤ x ≤ π/2 we have

1 + r

1− 2r cos x + r2
≤ π2(r + 1)

8rx2
≤ π2

4rx2
.

Then

∫ π

0

x2 1− r2

1− 2r cos x + r2
dx = (1− r)

∫ π

0

x2 1 + r

1− 2r cos x + r2
dx

≤ (1− r)

{
π2

4r

∫ π/2

0

x2

x2
dx +

(√
2 + 1

2

)∫ π

π/2

x2dx

}

≤ (1− r)

(
1

8r
+

7(
√

2 + 1)

48

)
π3

≤ C(1− r)
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for some constant C > 0 as long as r is not near 0, i.e. r ≥ 1/2 say. In
particular the integral tends to zero as r → 1−. Hence

lim
r→1−

∞∑
n=1

(−1)n+1rn

n2
=

π2

12
. (6)

We have to be careful here about taking the limit inside the series. Con-
sider

∞∑
i=0

(−1)iri = 1− r + r2 − r3 + ...

=
1

1 + r
,

valid for −1 < r < 1. So

lim
r→1−

∞∑
i=0

(−1)iri = lim
r→1−

1

1 + r
=

1

2
.

Yet if we try take the limit inside the series we get

∞∑
i=0

(−1)i lim
r→1−

ri =
∞∑
i=0

(−1)i

which is not defined. Of course, the difference with our example is that when
the limit is taken inside the series (6) the resulting series is convergent.

Let

S(r) =
∞∑

n=1

(−1)n+1rn

n2
and Sk(r) =

k∑
n=1

(−1)n+1rn

n2
.

By the comparison test S(r) converges (absolutely) for −1 ≤ r ≤ 1.
Consider

|S(1)− S(r)| = |S(1)− Sk(1) + Sk(1)− Sk(r) + Sk(r)− S(r)|
≤ |S(1)− Sk(1)|+ |Sk(1)− Sk(r)|+ |Sk(r)− S(r)|. (7)

Let

A(r,M,N) =
N∑

n=M

(−1)n+1rn

n2
.
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Then given any ε > 0 we have that there exists N0 such that

|A(r,M,N)| ≤
N∑

n=M

1

n2
< ε

for all N > M > N0 and all −1 ≤ r ≤ 1. Fix such an M , and let N
tend to ∞. Then with k = M in (7) we see that the first and third terms
are less than ε. For the second term we have that SM(r) is a finite sum of
continuous functions and so continuous. Therefore there exists δ > 0 such
for −δ < |r − 1| < δ we have |SM(1) − SM(r)| < ε. Combining we see that
there exists δ > 0 such for 1 − δ < r ≤ 1 we have |S(1) − S(r)| < ε. Hence
limr→1− S(r) = S(1), that is,

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

Using partial sums it is possible to make the following “suggestion” logi-
cally sound.

∞∑
n=1

(−1)n+1

n2
=

∞∑
n=1

n odd

1

n2
−

∞∑
n=1

n even

1

n2
=

∞∑
n=1

1

n2
− 2

∞∑
n=1

n even

1

n2

=
∞∑

n=1

1

n2
− 2

22

∞∑

k=1

1

k2
=

1

2

∞∑
n=1

1

n2
.

Hence

∞∑
n=1

1

n2
=

π2

6
.

¥
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