Appendix to Notes 7

Extended version of Monotonic Convergence Theorem

From the notes recall the following important result.
Theorem 4.11 Lebesgue's Monotone Convergence Theorem
Let $0 \leq f_{1} \leq \ldots \leq f_{n} \leq f_{n+1} \leq \ldots$ be an increasing sequence of nonnegative \mathcal{F}-measurable functions. Let $E \in \mathcal{F}$. Then

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} \lim _{n \rightarrow \infty} f_{n} d \mu
$$

We can try to extend this Theorem. The result is often stated under the condition that $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. (μ) on E but this will follow from Theorem 4.11 if we simply apply Corollary 4.10. We can go further. Perhaps we only have $f_{n} \leq f_{n+1}$ a.e. (μ) on E. That is, there exists a set A_{n} with zero measure so that for all $x \in X \backslash A_{n}$ we have $f_{n}(x) \leq f_{n+1}(x)$. Let $A=\bigcup_{n=1}^{\infty} A_{n}$ so that, by countable sub-additivity, $\mu(A) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)=0$. Then for all $x \in E \backslash A$ we have

$$
f_{1}(x) \leq f_{2}(x) \leq f_{3}(x) \leq \ldots
$$

So $\lim f_{n}$ exists a.e. (μ). Let us suppose that f is an \mathcal{F}-measurable nonnegative function defined on all of E such that on $E \backslash A$ we have $f=\lim f_{n}$ a.e. (μ). That is, there exists a set $B \subseteq E \backslash A$ of measure zero so that for all $x \in(E \backslash A) \backslash B=X \backslash(A \cup B)$ we have $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
Theorem 1
With the conditions above, and assuming that μ is complete

$$
\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Proof

The inequality $f_{n} \leq f_{n+1}$ a.e. (μ) on E means that $\int_{E} f_{n} d \mu \leq \int_{E} f_{n+1} d \mu$ for all n so $L=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu$ exists, possibly infinite.

Note that for $x \in X \backslash(A \cup B)$ we have $f_{n}(x) \leq \lim _{m \rightarrow \infty} f_{m}(x)=f(x)$ so, for every $n \geq 1, f_{n} \leq f$ a.e. (μ) on X. Thus $\int_{E} f_{n} d \mu \leq \int_{E} f d \mu$ for all n. Hence

$$
\begin{equation*}
L \leq \int_{E} f d \mu \tag{1}
\end{equation*}
$$

Let $0 \leq s \leq f$ be any simple \mathcal{F}-measurable function on E and let $0 \leq$ $c \leq 1$. Set $E_{n}=\left\{x \in E: c s(x) \leq f_{n}(x)\right\}$. It is not necessarily true that
$E_{n} \subseteq E_{n+1}$. For instance if $x \in E_{n} \cap A_{n}$ then we will have $c s(x) \leq f_{n}(x)$ since $x \in E_{n}$ and we may have $f_{n}(x)>f_{n+1}(x)$ since $x \in A$. So it is possible that $c s(x)>f_{n+1}(x)$ that is, $x \notin E_{n+1}$. But certainly $E_{n} \cap A_{n}^{c} \subseteq E_{n+1}$, so almost all of E_{n} lies in E_{n+1} in that $E_{n} \backslash E_{n+1} \subseteq\left(E_{n} \cap A_{n}\right) \backslash E_{n+1} \subseteq A_{n}$, i.e. $\mu\left(E_{n} \backslash E_{n+1}\right)=0$. Nonetheless, we have the following:
Lemma 1 If $E_{1}, E_{2}, E_{2}, \ldots \in \mathcal{F}$ satisfy $\mu\left(E_{j} \backslash E_{j+1}\right)=0$ for all $j \geq 1$, then

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

Proof
Define $F_{n}=\bigcap_{j \geq n} E_{j}$. Then $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq \ldots$ and so, by Lemma 4.1,

$$
\begin{equation*}
\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(F_{n}\right) . \tag{2}
\end{equation*}
$$

Now

$$
\bigcup_{n=1}^{\infty} F_{n}=\bigcup_{n=1}^{\infty} \bigcap_{j \geq n} E_{j} \subseteq \bigcup_{n=1}^{\infty} E_{n}
$$

If $x \in \bigcup_{n=1}^{\infty} E_{n}$ then there exists $k \geq 1$ such that $x \in E_{k}$. If $x \notin \bigcup_{n=1}^{\infty} F_{n}$ then, in particular, $x \notin F_{k}=\bigcap_{j \geq k} E_{j}$. So there exists $j \geq k$ such that $x \notin E_{j}$ (obviously $j \neq k$). Let ℓ be the largest integer in the range $k \leq \ell<j$ for which $x \in E_{\ell}$. Then $x \notin E_{\ell+1}$ and so $x \in E_{\ell} \backslash E_{\ell+1}$. Hence

$$
\left(\bigcup_{n=1}^{\infty} E_{n}\right) \backslash\left(\bigcup_{n=1}^{\infty} F_{n}\right) \subseteq \bigcup_{\ell=1}^{\infty}\left(E_{\ell} \backslash E_{\ell+1}\right)
$$

Since the right hand side has measure zero and μ is complete we deduce that

$$
\begin{equation*}
\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) . \tag{3}
\end{equation*}
$$

Obviously $F_{n} \subseteq E_{n}$ but what of $E_{n} \backslash F_{n}$? Similar to above, if $x \in E_{n}$ and $x \notin F_{n}$ then there exists $j \geq n$ such that $x \in E_{j}$ and so $x \in E_{\ell} \backslash E_{\ell+1}$ for some $n \leq \ell<j$. That is, $E_{n} \backslash F_{n} \subseteq \bigcup_{\ell=1}^{\infty}\left(E_{\ell} \backslash E_{\ell+1}\right)$, so $\mu\left(E_{n}\right)=\mu\left(F_{n}\right)$. Combining this with (2) and (3) gives

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

Proposition 1

If s is a simple \mathcal{F}-measurable function on $\bigcup_{n=1}^{\infty} E_{n}$, with E_{n} as in the result above, then

$$
\lim _{n \rightarrow \infty} I_{E_{n}}(s)=I_{\bigcup_{n=1}^{\infty} E_{n}}(s)
$$

Proof Straightforward, identical to the proof of Theorem 4.2(v).
We can now return to the proof of the Theorem 1. As in the proof of Theorem 4.11

$$
\begin{align*}
\int_{E} f_{n} d \mu & \geq \int_{E_{n}} f_{n} d \mu \\
& \geq \int_{E_{n}} c s d \mu=c I_{E_{n}}(s) . \tag{4}
\end{align*}
$$

We have seen above that the sets E_{n} satisfy the conditions of Lemma 1 so we let $n \rightarrow \infty$ in (4), applying Proposition 1 and obtaining

$$
L \geq c I_{\bigcup_{n=1}^{\infty} E_{n}}(s)
$$

What is $\bigcup_{n=1}^{\infty} E_{n}$?
Consider $x \in E \backslash\left(\bigcup_{n=1}^{\infty} E_{n}\right)$ in which case $\operatorname{cs}(x)>f_{n}(x)$ for all n. If we restrict to $x \in E \backslash(A \cup B)$ then $x \notin A$ which implies that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists, so we have that $c s(x) \geq \lim _{n \rightarrow \infty} f_{n}(x)$. And since $x \notin B$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and so $c s(x) \geq f(x)$. This is impossible since for all x we have $s(x) \leq f(x)$ and $c<1$. Hence

$$
E \backslash\left(\bigcup_{n=1}^{\infty} E_{n}\right) \subseteq A \cup B
$$

Since the right hand side has measure zero we conclude that

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu(E)
$$

and

$$
L \geq c I_{E}(s) .
$$

As in the previous version we let $c \rightarrow 1$ to get $L \geq I_{E}(s)$. Thus L is an upper bound on the set of integrals of simple functions less than f. Yet $\int_{E} f d \mu$ is the least of all such upper bounds. Hence

$$
\begin{equation*}
L \geq \int_{E} f d \mu \tag{5}
\end{equation*}
$$

Combining (1) and (5) gives the required equality.
Finally, you can never have too many proofs of the following result.

Example

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Verification Let $z=r(\cos x+i \sin x)$ for $0<r<1$.

$$
\begin{aligned}
\frac{1-r^{2}}{1-(z+\bar{z})+r^{2}} & =\frac{1-z \bar{z}}{(1-z)(1-\bar{z})}=\frac{1-\bar{z}+\bar{z}(1-z)}{(1-z)(1-\bar{z})} \\
& =\frac{1}{(1-z)}+\bar{z} \frac{1}{(1-\bar{z})} \\
& =\sum_{n=0}^{\infty} z^{n}+\bar{z} \sum_{n=0}^{\infty} \bar{z}^{n} \\
& =1+\sum_{n=1}^{\infty}\left(z^{n}+\bar{z}^{n}\right) \\
& =1+2 \sum_{n=1}^{\infty} r^{n} \cos n x .
\end{aligned}
$$

So as in example 20 we can use Lebesgue's Dominated Convergence Theorem to justify

$$
\int_{a}^{b} f(x) \frac{1-r^{2}}{1-2 r \cos x+r^{2}} d x=\int_{a}^{b} f(x) d x+2 \sum_{n=1}^{\infty} r^{n} \int_{a}^{b} f(x) \cos n x d x
$$

as long as f is finite and integrable over (a, b). Apply this with $f(x)=x^{2}$ to get

$$
\int_{0}^{\pi} x^{2} \frac{1-r^{2}}{1-2 r \cos x+r^{2}} d x=\frac{\pi^{3}}{3}+4 \pi \sum_{n=1}^{\infty} \frac{(-1)^{n} r^{n}}{n^{2}}
$$

having used integration by parts to evaluate the integrals.
We next try to bound

$$
\frac{1+r}{1-2 r \cos x+r^{2}}
$$

from above. For $\pi / 2 \leq x \leq \pi$ we have $\cos x \leq 0$ and so $1-2 r \cos x+r^{2} \geq$ $1+r^{2}$ in which case

$$
\frac{1+r}{1-2 r \cos x+r^{2}} \leq \frac{1+r}{1+r^{2}} \leq \frac{\sqrt{2}+1}{2}
$$

the maximum value being attained at $r=\sqrt{2}-1$. For $0 \leq x \leq \pi / 2$ use the inequality

$$
\cos x \leq 1-\frac{4}{\pi^{2}} x^{2}
$$

(The coefficient $4 / \pi^{2}$ is chosen such that the left hand side equals the right hand side at both $x=0$ and $x=\pi / 2$. I leave it to the student to check that the inequality holds in the interval between but note that when $x=\pi / 4$ the left hand side equals $1 / \sqrt{2}$ which is less than the value of the right hand side, 3/4.) Thus

$$
\begin{aligned}
1-2 r \cos x+r^{2} & \geq 1-2 r\left(1-\frac{4}{\pi^{2}} x^{2}\right)+r^{2} \\
& =(1-r)^{2}+\frac{8 r x^{2}}{\pi^{2}} \\
& \geq \frac{8 r x^{2}}{\pi^{2}}
\end{aligned}
$$

which is a little weak when r is small but we are interested in r near 1. So for $0 \leq x \leq \pi / 2$ we have

$$
\frac{1+r}{1-2 r \cos x+r^{2}} \leq \frac{\pi^{2}(r+1)}{8 r x^{2}} \leq \frac{\pi^{2}}{4 r x^{2}} .
$$

Then

$$
\begin{aligned}
& \int_{0}^{\pi} x^{2} \\
& 1-2 r \cos x+r^{2} \\
& 1-r^{2}=(1-r) \int_{0}^{\pi} x^{2} \frac{1+r}{1-2 r \cos x+r^{2}} d x \\
& \leq(1-r)\left\{\frac{\pi^{2}}{4 r} \int_{0}^{\pi / 2} \frac{x^{2}}{x^{2}} d x+\left(\frac{\sqrt{2}+1}{2}\right) \int_{\pi / 2}^{\pi} x^{2} d x\right\} \\
& \leq(1-r)\left(\frac{1}{8 r}+\frac{7(\sqrt{2}+1)}{48}\right) \pi^{3} \\
& \quad \leq C(1-r)
\end{aligned}
$$

for some constant $C>0$ as long as r is not near 0 , i.e. $r \geq 1 / 2$ say. In particular the integral tends to zero as $r \rightarrow 1-$. Hence

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} r^{n}}{n^{2}}=\frac{\pi^{2}}{12} \tag{6}
\end{equation*}
$$

We have to be careful here about taking the limit inside the series. Consider

$$
\begin{aligned}
\sum_{i=0}^{\infty}(-1)^{i} r^{i} & =1-r+r^{2}-r^{3}+\ldots \\
& =\frac{1}{1+r}
\end{aligned}
$$

valid for $-1<r<1$. So

$$
\lim _{r \rightarrow 1-} \sum_{i=0}^{\infty}(-1)^{i} r^{i}=\lim _{r \rightarrow 1-} \frac{1}{1+r}=\frac{1}{2}
$$

Yet if we try take the limit inside the series we get

$$
\sum_{i=0}^{\infty}(-1)^{i} \lim _{r \rightarrow 1-} r^{i}=\sum_{i=0}^{\infty}(-1)^{i}
$$

which is not defined. Of course, the difference with our example is that when the limit is taken inside the series (6) the resulting series is convergent.

Let

$$
S(r)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} r^{n}}{n^{2}} \quad \text { and } \quad S_{k}(r)=\sum_{n=1}^{k} \frac{(-1)^{n+1} r^{n}}{n^{2}}
$$

By the comparison test $S(r)$ converges (absolutely) for $-1 \leq r \leq 1$.
Consider

$$
\begin{align*}
|S(1)-S(r)| & =\left|S(1)-S_{k}(1)+S_{k}(1)-S_{k}(r)+S_{k}(r)-S(r)\right| \\
& \leq\left|S(1)-S_{k}(1)\right|+\left|S_{k}(1)-S_{k}(r)\right|+\left|S_{k}(r)-S(r)\right| \tag{7}
\end{align*}
$$

Let

$$
A(r, M, N)=\sum_{n=M}^{N} \frac{(-1)^{n+1} r^{n}}{n^{2}}
$$

Then given any $\varepsilon>0$ we have that there exists N_{0} such that

$$
|A(r, M, N)| \leq \sum_{n=M}^{N} \frac{1}{n^{2}}<\varepsilon
$$

for all $N>M>N_{0}$ and all $-1 \leq r \leq 1$. Fix such an M, and let N tend to ∞. Then with $k=M$ in (7) we see that the first and third terms are less than ε. For the second term we have that $S_{M}(r)$ is a finite sum of continuous functions and so continuous. Therefore there exists $\delta>0$ such for $-\delta<|r-1|<\delta$ we have $\left|S_{M}(1)-S_{M}(r)\right|<\varepsilon$. Combining we see that there exists $\delta>0$ such for $1-\delta<r \leq 1$ we have $|S(1)-S(r)|<\varepsilon$. Hence $\lim _{r \rightarrow 1-} S(r)=S(1)$, that is,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

Using partial sums it is possible to make the following "suggestion" logically sound.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} & =\sum_{\substack{n=1 \\
n \text { odd }}}^{\infty} \frac{1}{n^{2}}-\sum_{\substack{n=1 \\
n \text { even }}}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}-2 \sum_{\substack{n=1 \\
n \text { even }}}^{\infty} \frac{1}{n^{2}} \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}}-\frac{2}{2^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

