Appendix to Notes 6
Chebychev’s Theorem

Theorem 1 Chebychev’s Theorem
Let f be a non-negative F-measurable function. Then, for ¢ > 0 we have

1
pla s f(z) > c} < E/de”'
Proof Let C = {z: f(z) > ¢} € F. Then
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This simple result has many applications, especially in probability. Here we
give an application to number theory, using the simple functions defined in
Appendix 5.

Let I = [0,1]. For = € I we can use the notation of appendix 5 with
{ =2 to write
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Set Sn(x) = > i<y @i(z). The question is, what is the average value of
Note that
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and so

1
N
/ Sndu = 5> for all N > 1.
0

Theorem 2
For all € > 0 we have that
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as N — oo.



This shows that the values of Sy(z)/N are concentrated about 1/2 as N
tends to infinity. This is a special case of the weak law of large numbers.

Proof
Consider the Radamacher function defined as Ry(x) = 2ax(x) — 1 so

1 if ag(x) =1,
Ri(z) = { -1 if al;:(a:) = 0.

These are simple functions though not non-negative. Nontheless they can
be integrated since the values and domains are finite. These functions have
orthogonality properties, the first of which is trivial.

/Ridu =1,
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/RiRjdu = 0, when 7 # J.
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For the verification of the second of these we write

n n+1
L = (05|

so that

Ri(z) = { 1 if z € Ix(n) with n odd

—1 if x € Ix(n) with n even.

Now, without loss of generality, assume that ¢ < j so that, in fact, i <
j — 1. Then given an n < 277! — 1, we can find an n’ < 2° — 1 such that
I;_1(n) C I;(n'). Yet R; is constant on I;(n’) and so it must be constant on
I;_1(n). Decompose

7 B n n+l1| (2n 2n+1 U 2n+1 2n+42
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= L;(2n)UI;(2n+1).

Here, R;(x) = —1 on I;(2n) and R;(x) =1 on I;(2n + 1). Setting R; ;_; to
be the value of R;(x) on I;_1(n) we get
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Thus
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Let Tiv(7) = > ;< Ri(w). Then

Tn(z)= Y (20;(z) —1) =2Sy(z) - N

1<i<N

So

and it suffices to show that
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pl{r el |Ty(z)| >eN} — 0.

But |Ty(x)| > eN if, and only if, Ty(x)? > e2N?. So it suffices to show
that

or, on replacing 2¢ by e,

p{z €l:Ty(x)* > N*} — 0.
Yet Chebychev’s Theorem implies that
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which tends to zero as N tends to infinity. ]

It can be shown that if we set

A:{xe]: lim SN(;E):E}

N—oco N 2
then p(A°) = 0. So, for almost all (u) of the z € I we have that
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This would be an example of the strong law of large numbers. It says that
for almost all x the digits 0 and 1 occur equally frequently in the binary
expansion. What happens for general bases (7

Suppose that = € [0, 1] is expressed as a non-terminating expansion in
the base of £. Suppose further that the digit b occurs ny, times in the first n
places. If
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when n — oo we say that b has frequency (3. It is not a priori obvious that

this limit exists, yet it does. We say that x is simply normal in the scale of
¢ if
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for all ¢ possible digits b. So (1) says that almost all numbers are simply
normal in base 2.



Example 1 When ¢ = 2,

0 1 0 1 0 1
x = 0.0101010101010... = 5 + 7] + >3 + o + > + % + ...

is simply normal. Yet

L T
T = —+s+m++=+=+..
2 1221237 24" 95 " 96

in base 4. So x is not simply normal in base 4.

Definition We say that x is normal in base ¢ if all of (the fractional parts
of) x,lx, >z, 3z, .... are simply normal in all bases £, (2 (3, .... .
Theorem 3

Almost all numbers are normal in any scale.

Proof Not given. |



