
Appendix to Notes 6

Chebychev’s Theorem

Theorem 1 Chebychev’s Theorem
Let f be a non-negative F -measurable function. Then, for c > 0 we have

µ{x : f(x) > c} ≤ 1

c

∫

X

fdµ.

Proof Let C = {x : f(x) > c} ∈ F . Then

∫

X

fdµ ≥
∫

C

fdµ >

∫

C

cdµ = cµ(C).

¥
This simple result has many applications, especially in probability. Here we
give an application to number theory, using the simple functions defined in
Appendix 5.

Let I = [0, 1]. For x ∈ I we can use the notation of appendix 5 with
` = 2 to write

x =
∞∑
i=1

ai(x)

2i
.

Set SN(x) =
∑

1≤i≤N ai(x). The question is, what is the average value of
SN(x)?

Note that

∫ 1

0

aidµ =
1

2
for all i

and so

∫ 1

0

SNdµ =
N

2
for all N ≥ 1.

Theorem 2
For all ε > 0 we have that

µ

{
x ∈ I :

∣∣∣∣
SN(x)

N
− 1

2

∣∣∣∣ > ε

}
→ 0

as N →∞.
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This shows that the values of SN(x)/N are concentrated about 1/2 as N
tends to infinity. This is a special case of the weak law of large numbers.

Proof
Consider the Radamacher function defined as Rk(x) = 2ak(x)− 1 so

Rk(x) =

{
1 if ak(x) = 1,
−1 if ak(x) = 0.

These are simple functions though not non-negative. Nontheless they can
be integrated since the values and domains are finite. These functions have
orthogonality properties, the first of which is trivial.

∫

I

R2
kdµ = 1,

and

∫

I

RiRjdµ = 0, when i 6= j.

For the verification of the second of these we write

Ik(n) =

(
n

2k
,
n + 1

2k

]
,

so that

Rk(x) =

{
1 if x ∈ Ik(n) with n odd
−1 if x ∈ Ik(n) with n even.

Now, without loss of generality, assume that i < j so that, in fact, i ≤
j − 1. Then given an n ≤ 2j−1 − 1, we can find an n′ ≤ 2i − 1 such that
Ij−1(n) ⊆ Ii(n

′). Yet Ri is constant on Ii(n
′) and so it must be constant on

Ij−1(n). Decompose

Ij−1(n) =

(
n

2j−1
,
n + 1

2j−1

]
=

(
2n

2j
,
2n + 1

2j

]
∪

(
2n + 1

2j
,
2n + 2

2j

]

= Ij(2n) ∪ Ij(2n + 1).

Here, Rj(x) = −1 on Ij(2n) and Rj(x) = 1 on Ij(2n + 1). Setting Ri,,j−1 to
be the value of Ri(x) on Ij−1(n) we get
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∫

Ij−1(n)

RiRjdµ = Ri,,j−1

∫

Ij−1(n)

Rjdµ

= Ri,,j−1 (−µ(Ij(2n)) + µ(Ij(2n + 1)))

= Ri,,j−1

(
− 1

2j
+

1

2j

)

= 0.

Thus

∫

I

RiRjdµ =
∑

1≤n≤2j−1−1

∫

Ij−1(n)

RiRjdµ = 0.

Let TN(x) =
∑

1≤i≤N Ri(x). Then

TN(x) =
∑

1≤i≤N

(2ai(x)− 1) = 2SN(x)−N.

So

SN(x)

N
− 1

2
=

TN(x)

2N

and it suffices to show that

µ

{
x ∈ I :

∣∣∣∣
TN(x)

2N

∣∣∣∣ > ε

}
→ 0

or, on replacing 2ε by ε,

µ {x ∈ I : |TN(x)| > εN} → 0.

But |TN(x)| > εN if, and only if, TN(x)2 > ε2N2. So it suffices to show
that

µ
{
x ∈ I : TN(x)2 > ε2N2

} → 0.

Yet Chebychev’s Theorem implies that

3



µ
{
x ∈ I : TN(x)2 > ε2N2

}

≤ 1

ε2N2

∫

I

T 2
Ndµ

=
1

ε2N2

∫

I

( ∑
1≤i≤N

Ri

)2

dµ

=
1

ε2N2




∑
1≤i≤N

∫

I

R2
i dµ +

∑
1≤i≤N

∑
1≤j≤N

i 6=j

∫

I

RiRjdµ




=
1

ε2N

which tends to zero as N tends to infinity. ¥
It can be shown that if we set

A =

{
x ∈ I : lim

N→∞
SN(x)

N
=

1

2

}

then µ(Ac) = 0. So, for almost all (µ) of the x ∈ I we have that

lim
N→∞

SN(x)

N
=

1

2
. (1)

This would be an example of the strong law of large numbers. It says that
for almost all x the digits 0 and 1 occur equally frequently in the binary
expansion. What happens for general bases `?

Suppose that x ∈ [0, 1] is expressed as a non-terminating expansion in
the base of `. Suppose further that the digit b occurs nb times in the first n
places. If

nb

n
→ β

when n → ∞ we say that b has frequency β. It is not a priori obvious that
this limit exists, yet it does. We say that x is simply normal in the scale of
` if

nb

n
→ 1

`

for all ` possible digits b. So (1) says that almost all numbers are simply
normal in base 2.
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Example 1 When ` = 2,

x = 0.0101010101010... =
0

2
+

1

22
+

0

23
+

1

24
+

0

25
+

1

26
+ ....

is simply normal. Yet

x =
0

2
+

1

22
+

0

23
+

1

24
+

0

25
+

1

26
+ ....

=
1

22
+

1

24
+

1

26
+ ...

=
1

4
+

1

42
+

1

43
+ ...

= 0.1111...

in base 4. So x is not simply normal in base 4.

Definition We say that x is normal in base ` if all of (the fractional parts
of) x, `x, `2x, `3x, .... are simply normal in all bases `, `2, `3, .... .

Theorem 3

Almost all numbers are normal in any scale.

Proof Not given. ¥

5


