Appendix to Notes 6

Chebychev's Theorem

Theorem 1 Chebychev's Theorem
Let f be a non-negative \mathcal{F}-measurable function. Then, for $c>0$ we have

$$
\mu\{x: f(x)>c\} \leq \frac{1}{c} \int_{X} f d \mu
$$

Proof Let $C=\{x: f(x)>c\} \in \mathcal{F}$. Then

$$
\int_{X} f d \mu \geq \int_{C} f d \mu>\int_{C} c d \mu=c \mu(C)
$$

This simple result has many applications, especially in probability. Here we give an application to number theory, using the simple functions defined in Appendix 5.

Let $I=[0,1]$. For $x \in I$ we can use the notation of appendix 5 with $\ell=2$ to write

$$
x=\sum_{i=1}^{\infty} \frac{a_{i}(x)}{2^{i}} .
$$

Set $S_{N}(x)=\sum_{1 \leq i \leq N} a_{i}(x)$. The question is, what is the average value of $S_{N}(x)$?

Note that

$$
\int_{0}^{1} a_{i} d \mu=\frac{1}{2} \quad \text { for all } i
$$

and so

$$
\int_{0}^{1} S_{N} d \mu=\frac{N}{2} \quad \text { for all } N \geq 1
$$

Theorem 2

For all $\varepsilon>0$ we have that

$$
\mu\left\{x \in I:\left|\frac{S_{N}(x)}{N}-\frac{1}{2}\right|>\varepsilon\right\} \rightarrow 0
$$

as $N \rightarrow \infty$.

This shows that the values of $S_{N}(x) / N$ are concentrated about $1 / 2$ as N tends to infinity. This is a special case of the weak law of large numbers.

Proof

Consider the Radamacher function defined as $R_{k}(x)=2 a_{k}(x)-1$ so

$$
R_{k}(x)=\left\{\begin{aligned}
1 & \text { if } a_{k}(x)=1, \\
-1 & \text { if } a_{k}(x)=0 .
\end{aligned}\right.
$$

These are simple functions though not non-negative. Nontheless they can be integrated since the values and domains are finite. These functions have orthogonality properties, the first of which is trivial.

$$
\int_{I} R_{k}^{2} d \mu=1
$$

and

$$
\int_{I} R_{i} R_{j} d \mu=0, \text { when } i \neq j \text {. }
$$

For the verification of the second of these we write

$$
I_{k}(n)=\left(\frac{n}{2^{k}}, \frac{n+1}{2^{k}}\right],
$$

so that

$$
R_{k}(x)=\left\{\begin{aligned}
1 & \text { if } x \in I_{k}(n) \text { with } n \text { odd } \\
-1 & \text { if } x \in I_{k}(n) \text { with } n \text { even. }
\end{aligned}\right.
$$

Now, without loss of generality, assume that $i<j$ so that, in fact, $i \leq$ $j-1$. Then given an $n \leq 2^{j-1}-1$, we can find an $n^{\prime} \leq 2^{i}-1$ such that $I_{j-1}(n) \subseteq I_{i}\left(n^{\prime}\right)$. Yet R_{i} is constant on $I_{i}\left(n^{\prime}\right)$ and so it must be constant on $I_{j-1}(n)$. Decompose

$$
\begin{aligned}
I_{j-1}(n) & =\left(\frac{n}{2^{j-1}}, \frac{n+1}{2^{j-1}}\right]=\left(\frac{2 n}{2^{j}}, \frac{2 n+1}{2^{j}}\right] \cup\left(\frac{2 n+1}{2^{j}}, \frac{2 n+2}{2^{j}}\right] \\
& =I_{j}(2 n) \cup I_{j}(2 n+1) .
\end{aligned}
$$

Here, $R_{j}(x)=-1$ on $I_{j}(2 n)$ and $R_{j}(x)=1$ on $I_{j}(2 n+1)$. Setting $\bar{R}_{i, j-1}$ to be the value of $R_{i}(x)$ on $I_{j-1}(n)$ we get

$$
\begin{aligned}
\int_{I_{j-1}(n)} R_{i} R_{j} d \mu & =\bar{R}_{i, j-1} \int_{I_{j-1}(n)} R_{j} d \mu \\
& =\bar{R}_{i, j-1}\left(-\mu\left(I_{j}(2 n)\right)+\mu\left(I_{j}(2 n+1)\right)\right) \\
& =\bar{R}_{i, j-1}\left(-\frac{1}{2^{j}}+\frac{1}{2^{j}}\right) \\
& =0
\end{aligned}
$$

Thus

$$
\int_{I} R_{i} R_{j} d \mu=\sum_{1 \leq n \leq 2^{j-1}-1} \int_{I_{j-1}(n)} R_{i} R_{j} d \mu=0 .
$$

Let $T_{N}(x)=\sum_{1 \leq i \leq N} R_{i}(x)$. Then

$$
T_{N}(x)=\sum_{1 \leq i \leq N}\left(2 a_{i}(x)-1\right)=2 S_{N}(x)-N .
$$

So

$$
\frac{S_{N}(x)}{N}-\frac{1}{2}=\frac{T_{N}(x)}{2 N}
$$

and it suffices to show that

$$
\mu\left\{x \in I:\left|\frac{T_{N}(x)}{2 N}\right|>\varepsilon\right\} \rightarrow 0
$$

or, on replacing 2ε by ε,

$$
\mu\left\{x \in I:\left|T_{N}(x)\right|>\varepsilon N\right\} \rightarrow 0 .
$$

But $\left|T_{N}(x)\right|>\varepsilon N$ if, and only if, $T_{N}(x)^{2}>\varepsilon^{2} N^{2}$. So it suffices to show that

$$
\mu\left\{x \in I: T_{N}(x)^{2}>\varepsilon^{2} N^{2}\right\} \rightarrow 0
$$

Yet Chebychev's Theorem implies that

$$
\begin{aligned}
& \mu\left\{x \in I: T_{N}(x)^{2}>\varepsilon^{2} N^{2}\right\} \\
\leq & \frac{1}{\varepsilon^{2} N^{2}} \int_{I} T_{N}^{2} d \mu \\
= & \frac{1}{\varepsilon^{2} N^{2}} \int_{I}\left(\sum_{1 \leq i \leq N} R_{i}\right)^{2} d \mu \\
= & \frac{1}{\varepsilon^{2} N^{2}}\left(\sum_{1 \leq i \leq N} \int_{I} R_{i}^{2} d \mu+\sum_{1 \leq i \leq N} \sum_{1 \leq j \leq N} \int_{I} R_{i} R_{j} d \mu\right) \\
= & \frac{1}{\varepsilon^{2} N}
\end{aligned}
$$

which tends to zero as N tends to infinity.
It can be shown that if we set

$$
A=\left\{x \in I: \lim _{N \rightarrow \infty} \frac{S_{N}(x)}{N}=\frac{1}{2}\right\}
$$

then $\mu\left(A^{c}\right)=0$. So, for almost all (μ) of the $x \in I$ we have that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{S_{N}(x)}{N}=\frac{1}{2} \tag{1}
\end{equation*}
$$

This would be an example of the strong law of large numbers. It says that for almost all x the digits 0 and 1 occur equally frequently in the binary expansion. What happens for general bases ℓ ?

Suppose that $x \in[0,1]$ is expressed as a non-terminating expansion in the base of ℓ. Suppose further that the digit b occurs n_{b} times in the first n places. If

$$
\frac{n_{b}}{n} \rightarrow \beta
$$

when $n \rightarrow \infty$ we say that b has frequency β. It is not a priori obvious that this limit exists, yet it does. We say that x is simply normal in the scale of ℓ if

$$
\frac{n_{b}}{n} \rightarrow \frac{1}{\ell}
$$

for all ℓ possible digits b. So (1) says that almost all numbers are simply normal in base 2 .

Example 1 When $\ell=2$,

$$
x=0.0101010101010 \ldots=\frac{0}{2}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{0}{2^{5}}+\frac{1}{2^{6}}+\ldots
$$

is simply normal. Yet

$$
\begin{aligned}
x & =\frac{0}{2}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{0}{2^{5}}+\frac{1}{2^{6}}+\ldots \\
& =\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\ldots \\
& =\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\ldots \\
& =0.1111 \ldots
\end{aligned}
$$

in base 4 . So x is not simply normal in base 4 .
Definition We say that x is normal in base ℓ if all of (the fractional parts of) $x, \ell x, \ell^{2} x, \ell^{3} x, \ldots$ are simply normal in all bases $\ell, \ell^{2}, \ell^{3}, \ldots$. .
Theorem 3
Almost all numbers are normal in any scale.
Proof Not given.

