
Appendix to Notes 1

Cardinality

Assume that A and B are two finite sets and let |A| and |B| denote the
number of elements in the sets.

Note that |A| ≤ |B| if, and only if, there exists a one-to-one function from
A to B.

Alternatively, |A| ≤ |B| if, and only if, there exists an onto function from
B to A.

Assume now that we are given two sets C and D with a bijection between
them. A bijection is one-to-one from C to D (so |C| ≤ |D|) and onto from
C to D (so |C| ≥ |D|). Hence |C| = |D|.

We turn this around in the following definition.

Definition Two sets (including infinite sets) have the same cardinality if
there exists a bijection between them.

Example 1 For a finite set E we say that E has cardinality n, and write
|E| = n if there exists a bijection from E to {1, 2, 3, ..., n}. If the bijection is
g : E → {1, 2, 3, ..., n} then we can write E = {e1, e2, ..., en} where g(ek) = k
for all 1 ≤ k ≤ n.

Definition If for a set E there exists a bijection between E and N we say
that E is countable. (Though it is not standard we will also say that finite
sets are countable.) For an infinite countable set we write |E| = ℵ0. Again,
if the bijection is h : E → N then we can enumerate, or list the elements of,
E as E = {e1, e2, e3, ...} where h(ek) = k for all k ≥ 1.

Example 2 The set of integers, Z, is countable. For a possible bijection take

h : Z→ N, n 7→
{

2n− 1 if n ≥ 1
2− 2n if n ≤ 0.

This would give an enumerate of Z as {1, 0, 2,−1, 3,−2, 4,−3, ....}.
Example 3 The Cartesian product, N × N is countable. List the ordered
pairs in the following array.

(1, 1)(1) (1, 2)(2) (1, 3)(6) (1, 4)(7) ...(15)

(2, 1)(3) (2, 2)(5) (2, 3)(8) ...(14)

(3, 1)(4) (3, 2)(9) (3, 3)(13) ...
(4, 1)(10) (4, 2)(12) ...
...(11) ...

The superscripts here indicate how to map the elements of N× N to N.
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Example 4 The Cartesian product, Z × Z is countable. We know from
Example 2 that we can enumerate Z as {r1, r2, r3, ....} say, so we can list
Z× Z as follows.

(r1, r1)
(1) (r1, r2)

(2) (r1, r3)
(6) (r1, r4)

(7) ...(15)

(r2, r1)
(3) (r2, r2)

(5) (r2, r3)
(8) ...(14)

(r3, r1)
(4) (r3, r2)

(9) (r3, r3)
(13) ...

(r4, r1)
(10) (r4, r2)

(12) ...
...(11) ...

The same mapping as in Example 3 suffices.

Example 5 Similarly, Zn is countable for any n ≥ 1.

Theorem 1 If A is countable and B ⊆ A then B is countable.

Proof If B is finite there is nothing to prove.
Assume that B is infinite.
Let f : N→ A be a bijection that exists since A is countable and enumer-

ate the distinct elements of A as {a1, a2, a3, ...}. We look at those elements
that lie in B. Because of the ordering on A we get an ordering on B and we
can relabel so B = {b1, b2, b3, ...} where b1 is the first element of A in B, i.e.

b1 = an1 where n1 = min{n : an ∈ B},
b2 is second element of A in B, i.e

b2 = an2 where n2 = min{n : an ∈ B \ {b1}},
and in general

br+1 = anr+1 where nr+1 = min{n : an ∈ B \ {b1, b2, ..., br}}.
Note that the bi are distinct and every element of B occurs in the list
b1, b2, b3.....

To see this last statement take any element b of B. The since B ⊆ A we
have b = am for some m. The list n1 < n2 < n3.... is infinite and so at some
point we must have nt ≤ m < nt+1. If we had nt < m < nt+1 then we would
have the existance of am = b ∈ B with

min{n : an ∈ B \ {b1, b2, ..., bt}} > m > min{n : an ∈ B \ {b1, b2, ..., bt−1}}.

The first inequality tells us that b ∈ B \{b1, b2, ..., bt} where as the second
tells us that b /∈ B \ {b1, b2, ..., bt−1}, which is contradictory. Hence we must
have m = nt so the b must occur in our listing as bt.
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Since every element of B occurs in the list b1, b2, b3.... we have that the
map g : N → B, n 7→ bn is onto. We can see that it is 1-1 by assuming
g(s) = g(t) so bs = bt, i.e ans = ant . But then ns = nt since the labeled
elements of A are distinct. Similarly the nj are distinct so we must have
s = t. Hence g is 1-1, thus it is a bijection. Hence B is countable. ¥
Example 6 Q is countable.
Verification Write each element as r/s with s ∈ N, r ∈ Z and s, r coprime
(so the fraction is in lowest terms.) Then we can map Q into a subset of the
array in Example 4 by r/s 7→ (r, s). The image of this map is a subset of
an array that we know is countable and so is countable, and the map is a
bijection, so Q is countable.
Example 7 A countable union of countable sets is countable.

Verification A countable collection of sets means that they can be listed as
S1, S2, S3, ....., say. Each Si is countable and so they, in turn, can be listed as
Si = {ai1, ai2, ai3, ....}. Then

⋃∞
i=1 Si is contained in the following array. (I

use the word contained since the array may contain repeated elements that
are counted only once in the union.)

a11
(1) a12

(2) a13
(6) a14

(7) .... (15)

a21
(3) a22

(5) a23
(8) .... (14)

a31
(4) a32

(9) a33
(13) ...

a41
(10) a42

(12) ...
...(11) ...

As in previous examples this array is countable and so
⋃∞

i=1 Si is countable.

Definition A (real) algebraic number if a root of any polynomial of the form

anxn + an−1x
n−1 + an−2x

n−2 + .... + a2x
2 + a1x + a0, (1)

for any n ≥ 1 and where the ai ∈ Z for all i. For example
√

2 is algebraic.
If an algebraic number α is a root of a polynomial of degree n but no

polynomial of smaller degree we say that α has degree n.

Example 8 The set of algebraic numbers is countable.

Verification For each m ≥ 1 define Rm ⊆ R to be the set of real roots of all
polynomials as in (1) but with degree equal to m. For each polynomial there
are at most m roots and there are at most Zm+1 possible polynomials. So
Rm is a countable union of finite sets and therefore countable. Hence the set
of algebraic numbers,

⋃∞
n=1 Rn, is a countable union of countable sets, hence

countable.

Example 9 The set of real numbers, R, is uncountable.

Verification It suffices to show that [0, 1) is uncountable.
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Assume that [0, 1) is countable and so list the elements in non-terminating
decimal form. The list will start as

a1 = 0.a11a12a13a14...
a2 = 0.a21a22a23a24...
a3 = 0.a31a32a33a34...
a4 = 0.a41a42a43a44...

...

Consider now the number b = 0.b1b2b3b4... ∈ [0, 1) defined by

bj =

{
ajj + 1 if 0 ≤ ajj ≤ 8
1 if ajj = 9.

Obviously, for every j ≥ 1 the number b differs from the jth element in
the list in the jth decimal place. Hence b cannot occur in the list. This
contradicts the assertion that the list contains all numbers in [0, 1). Thus
the assumption is false, and R is not countable. This is known as Cantor’s
diagonal argument. ¥
Definition If a set, A, has the same cardinality as R we write |A| = c.

Example 10 We say that the non-algebraic real numbers are called transcen-
dental. Combining examples 8 and 9 we see that the set of transcendental
numbers is uncountable. So in some sense there are far more transcendental
numbers than algebraic numbers but it is far harder to recognize that a given
number is transcendental. For instance it is only relatively recently that π
and e have been proved to be transcendental. (It is hard enough to show
they are irrational!)

Note If A is a finite set then the number of subsets is given by 2|A|. We
use this observation to assign a symbol to the cardinality of the collection of
subsets of an infinite set.

Definition If A is a set (possibly infinite) the collection of all subsets of A
(i.e. the power set of A) will be denoted by 2A (though we still use the P (A)
notation) and the cardinality of 2A will be denoted by 2|A|.

Example 11 The set 2N is uncountable.

The proof of this is similar to the proof that R is uncountable. So suppose
2N is countable. Let v1, v2, v3, .... be some enumeration of the subsets of N.
Define a new set v by saying k is in v if, and only if, k is not in vk. Then,
for every k ≥ 1, one and only one of the pair v and vk contains k, and so v
differs from vk. Hence v does not appear in the enumeration, contradicting
our assumption.
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Definition We say that a set A has greater cardinality than a set B if A
cannot be put in one-to-one correspondence with B, but a proper subset of
A can be put in one-to-one correspondence with B.

So the cardinality of 2N is greater than N. The question arises whether
there exists a set A with greater cardinality than N and lesser cardinality
than 2N. It was asserted by Cantor in the Continuum Hypothesis that no
such set existed. In particular, this means that every infinite subset of 2N

is in one-to-one correspondence with either N or 2N. Alternatively, every
uncountable set, A, satisfies |A| ≥ c. Strangely, it is not expected that we
will ever know if this hypothesis is true or not.

Example 12 It is not too hard to show that 2ℵ0 = c. (Suggestion, for
every x ∈ [0, 1], written in base 2 as a non-terminating expansion, x =
0.x1x2x3x4...., define a subset V of N by k ∈ V if, and only if, xk = 1.)

Topological Space results

Theorem 1.3 (Heine-Borel) If [a, b] ⊆ R is covered by a collection of open
intervals, so [a, b] ⊆ ⋃

i∈I(ci, di), then there exists a finite sub-collection of

the (ci, di), which can relabeled as 1 ≤ i ≤ N such that [a, b] ⊆ ⋃N
i=1(ci, di).

Proof We have

[a, b] ⊆
⋃
i∈I

(ci, di).

Assume there does not exist a finite subcover. Split [a, b] = [a, c] ∪ [c, d],
where c = (a + b)/2. Both these subintervals are covered by the cover of
[a, b]. It cannot be the case that both these subintervals are covered by finite
subcovers for the unions of such finite subcovers would give a finite subcover
of [a, b]. So, take a subinterval that does not have a finite subcover. Split
in half again and take one of the new subintervals not covered by a finite
subcover.

Continue, in this way finding a sequence of closed intervals

J1 ⊇ J2 ⊇ J3 ⊇ ... with `(Ji) =
1

2i
,

none of which have a finite subcover. If ai is the left hand end point of Ji

then {ai}i≥1 is an increasing sequence bounded above by 1 and so converges,
to α say. If bi is the right hand end point of Ji then {bi}i≥1 is an decreasing
sequence bounded below by 0 and so converges, to β say. Also |ai−bi| = 1/2i

for all i and so α = β. Call this common value γ. Then
⋂

i Ji = {γ}. Here
γ ∈ [a, b] so there exists some i ∈ I such that γ ∈ (ci, di). Since this is an
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open interval and γ ∈ Ji for all i ≥ 1 where `(Ji) → 0 as i → ∞, we must
have the existence of n ≥ 1 such that γ ∈ Jn ⊆ (ci, di). But this gives a finite
cover of Jn, a contradiction. ¥
Theorem 1.4 (Lindelöf’s Theorem) If G = {Iα : α ∈ A} is a collection of
intervals (a, b) ⊆ R, possibly an uncountable collection, then there exists a
countable subcollection {Ii : i ≥ 1} ⊆ G such that

⋃
α∈A

Iα =
∞⋃
i=1

Ii.

Proof Let x ∈ ⋃
α∈A Iα, so there exists α ∈ A for which x ∈ Iα. If Iα = (a, b),

say, then a < x < b. Recall that Q is dense in R so we can find r, r′ ∈ Q for
which a < r < x < r′ < b. Write J = (r, r′). So for each x we can find an
interval J with x ∈ J ⊆ Iα and the end points of J are rational. The number
of rational points is countable so the number of different J that can occur as
we vary x ∈ ⋃

α∈A Iα is countable. So list the J that arise as J1, J2, J3, .... .
Then

⋃
α∈A

Iα ⊆
∞⋃
i=1

Ji ⊆
⋃
α∈A

Iα,

since each Ji ⊆ Iα for some α. Thus

⋃
α∈A

Iα =
∞⋃
i=1

Ji.

We have seen that, for each i ≥ 1, we have Ji ⊆ Iα for perhaps many
α ∈ A. Just choose one Iα and label it Ii. Then

⋃
α∈A

Iα =
∞⋃
i=1

Ji ⊆
∞⋃
i=1

Ii ⊆
⋃
α∈A

Iα.

We must have equality throughout and, hence, the result follows. ¥
This proof works because R contains a countable subset, Q, that is dense

or, how we have used this above, all open intervals contain an element from
this countable subset. A Topological Space, (X, T ), that has a countable
subset of X with a non-empty intersection with every open set, i.e. set in T ,
is said to be seperable.
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