Question Sheet 9

1) Let $A=\{a, b, c, d\}$ and let \mathcal{R} be the relation given by

$$
\mathcal{R}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(b, c),(a, c)\}
$$

Draw the digraph of \mathcal{R}.
Is \mathcal{R} reflexive, symmetric, transitive? In each case give a counter example if the answer is no.
2) Let $A=\mathbb{Z}$ and let $\mathcal{R}=\left\{(x, y): x, y \in A, x^{2}=y^{2}\right\}$.

Prove that \mathcal{R} is an equivalence relation.
3) Let $A=\mathbb{Z}$ and let $\mathcal{R}=\left\{(x, y): x y+y^{2}=x^{2}+1\right\}$.

Which of the following are true?
(i) $0 \mathcal{R} 0$,
(ii) $1 \mathcal{R} 1$,
(iii) $0 \mathcal{R} 1$,
(iv) $1 \mathcal{R} 0$,
(v) $1 \mathcal{R}(-2)$,
(vi) $0 \mathcal{R}(-2)$,
(vii) $3 \mathcal{R} 2$.

Show that \mathcal{R} is not reflexive, not symmetric and not transitive. (Give counterexamples.)
4) Let $A=\{1,2,3,4\}$ and $B=\{1,2,3\}$. Define a function $f: A \rightarrow B$ by the rule

$$
f(1)=1, f(2)=3, f(3)=1 \text { and } f(4)=2 .
$$

What is the image of 3 ?
What is the codomain of f ?
Draw a picture to show f.
Is f one-to-one?
Is f onto?
5) Let $A=\mathbb{N}$ and $B=\mathbb{Q}$. Define a function $f: A \rightarrow B$ by the rule

$$
f(x)=\frac{3}{2} x \quad \text { for all } x \in A .
$$

Prove that f is one-to-one.
Prove that $f(x) \neq 1$ for all $x \in A$.
Deduce that f is not onto.
6) (i) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule

$$
f(x)=x^{2} \quad \text { for all } x \in \mathbb{R} .
$$

Show that f is not one-to-one and not onto.
(ii) Let A be the set of all positive real numbers. Define $g: A \rightarrow A$ by the rules

$$
g(x)=x^{2} \quad \text { for all } x \in A .
$$

Prove that g is one-to-one.
Is g onto?
7) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule

$$
f(x)=2 x-3 \quad \text { for all } x \in \mathbb{R}
$$

Prove that f is one-to-one.
Show that

$$
f\left(\frac{y+3}{2}\right)=y \quad \text { for all } y \in \mathbb{R}
$$

Hence prove that f is onto.
8) Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Define a function $f: A \rightarrow B$ by the rule

$$
f(1)=b, f(2)=a, f(3)=c, f(4)=a .
$$

Let $g: B \rightarrow A$ be the function defined by the rule

$$
g(a)=2, g(b)=3, g(c)=1, g(d)=3 .
$$

Find $(g \circ f)(x)$ for each element x of A.
What is the domain of $g \circ f$?
What is the codomain of $g \circ f$?
9) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be the functions defined by the rules

$$
f(x)=\frac{x+1}{2} \quad \text { and } \quad g(x)=\frac{x+1}{2} \quad \text { for all } x \in \mathbb{R} .
$$

Find $(g \circ f)(0),(g \circ f)(1)$ and $(g \circ f)(-1)$.
Show that

$$
(g \circ f)(x)=\frac{x+3}{4}
$$

for all $x \in \mathbb{R}$.
10) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be the functions defined by the rules

$$
f(x)=x^{2}-1 \quad \text { and } \quad g(x)=x^{2}+1 \quad \text { for all } x \in \mathbb{R}
$$

Find $(g \circ f)(0),(g \circ f)(1),(f \circ g)(0)$ and $(f \circ g)(1)$.
Find expressions for $(g \circ f)(x)$ and $(f \circ g)(x)$.
11) Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4,5\}$.
(i) How many functions are there from A to B ?
(ii) How many one-to-one functions are there from A to B ?
(iii) How many functions from A to B do not take a to 1?
(iv) How many one-to-one functions from A to B take a to 1?

