Question Sheet 6

1) Define a subset A of \mathbb{N} recursively by
a) $1 \in A$,
b) If $x \in A$ then $x+3 \in A$ and $x^{2} \in A$,
c) only elements arising from a) and b) are in A.
(i) Prove that $52 \in A$,
(ii)Prove that $259 \in A$,
(iii) Prove that $2 \notin A$.
(Hint use RAA from logic)
2) Let $E=\{a, b\}$. Write down all elements of E^{*} which have length at most 3.
3) Let E be a finite set with k elements, $k \geq 1$. Find a formula for the number of elements of E^{*} which have length n. Explain why your formula is correct.
4) Let $E=\{0,1\}$. Define $A \subseteq E^{*}$ inductively by
a) $0,1 \in A$,
b) if $x \in A$ then $0 x 1 \in A$,
c) only elements arising from a) and b) are in A.
(i) Show that $0001111 \in A$.
(ii) Is $00001111 \in A$?
5) Let $E=\{a, b\}$. Define $R \subseteq E^{*}$ inductively by
a) $b a \in R$,
b) If $x=y a a$ for some $y \in E^{*}$ then $y a b a \in R$,

If $x=y b a$ for some $y \in E^{*}$ then $x a \in R$.
c) Only words arising from a) and b) are in R.

List at least 10 words from R.
6) Let $E=\{p, q, r,(),, \neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$. Define $L \subseteq E^{*}$ by
a) $p, q, r \in L$,
b) If $\alpha, \beta \in L$ then so are

$$
\begin{aligned}
& \neg(\alpha) \\
& (\alpha) \vee(\beta)
\end{aligned}
$$

$(\alpha) \wedge(\beta)$
$(\alpha) \rightarrow(\beta)$
$(\alpha) \leftrightarrow(\beta)$
c) Only words arising from a) and b) are in L

Prove carefully that $(\neg((p) \wedge(q))) \rightarrow((p) \rightarrow(r)) \in L$.

