Question Sheet 6

1) Define a subset A of \mathbb{N} recursively by

- a) $1 \in A$,
- b) If $x \in A$ then $x + 3 \in A$ and $x^2 \in A$,
- c) only elements arising from a) and b) are in A.
- (i) Prove that $52 \in A$,
- (ii)Prove that $259 \in A$, (iii) Prove that $2 \notin A$.
- (Hint use RAA from logic)

2) Let $E = \{a, b\}$. Write down all elements of E^* which have length at most 3.

3) Let E be a finite set with k elements, $k \ge 1$. Find a formula for the number of elements of E^* which have length n. Explain why your formula is correct.

4) Let $E = \{0, 1\}$. Define $A \subseteq E^*$ inductively by

- a) $0, 1 \in A$,
- b) if $x \in A$ then $0x1 \in A$,
- c) only elements arising from a) and b) are in A.
- (i) Show that $0001111 \in A$.
- (ii) Is $00001111 \in A$?

5) Let $E = \{a, b\}$. Define $R \subseteq E^*$ inductively by

- a) $ba \in R$,
- b) If x = yaa for some $y \in E^*$ then $yaba \in R$,
- If x = yba for some $y \in E^*$ then $xa \in R$.
- c) Only words arising from a) and b) are in R.

List at least 10 words from R.

6) Let
$$E = \{p, q, r, (,), \neg, \land, \lor, \rightarrow, \leftrightarrow\}$$
. Define $L \subseteq E^*$ by
a) $p, q, r \in L$,
b) If $\alpha, \beta \in L$ then so are
 $\neg(\alpha)$
 $(\alpha) \lor (\beta)$

 $\begin{aligned} & (\alpha) \land (\beta) \\ & (\alpha) \to (\beta) \\ & (\alpha) \leftrightarrow (\beta) \end{aligned}$

c) Only words arising from a) and b) are in LProve carefully that $(\neg((p) \land (q))) \rightarrow ((p) \rightarrow (r)) \in L$.