## Question Sheet 5

1) Let $U=\{1,2,3,4,5,6\}$. In each of the following cases give examples of sets $A, B, \ldots \subseteq U$ such that the equality does not hold.
(i) $(A \cup B) \cap C^{c}=A \cup\left(B \cap C^{c}\right)$,
(ii) $A \cap B \cap C=A \cap B \cap(C \cup B)$,
(iii) $(A \cup B) \cap A^{c}=B$,
(iv) $(A \cup B)^{c} \cap C=\left(A^{c} \cap C\right) \cup\left(B^{c} \cap C\right)$.
2) Draw the diagram

six times and shade the regions
(i) $A \cup B^{c}$,
(ii) $A^{c} \cup B^{c}$,
(iii) $(A \cap B)^{c}$,
(iv) $A^{c} \cap B$,
(v) $A^{c} \cap B^{c}$,
(vi) $(A \cup B)^{c}$.

What equalities do you find?
3) Draw the diagram

six times and shade the regions
(i) $A \cup(B \cap C)$,
(ii) $A \cap(B \cup C)$,
(iii) $(A \backslash B) \backslash C$,
(iv) $(A \triangle B) \triangle C$,
(v) $(A \cap B) \cup(A \cap C)$,
(vi) $(B \cup A) \cap(C \cup A)$.

What equalities do you find?
4) Let $U=\mathbb{Z}$. Recall that, for a real number $x$, the notation $|x|$ denotes the size or magnitude of $x$ and is given by

$$
|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Consider the predicates

$$
\begin{aligned}
& \left.p_{1}(x):|x-2|<5, \quad \text { (which means }-5<x-2<5\right), \\
& \left.p_{2}(x):|x+2|>4, \quad \text { (which means either } x+2>4 \text { or } x+2<-4\right), \\
& p_{3}(x):(x-1)^{2} \leq 16 .
\end{aligned}
$$

Let $A$ be the solution set of $p_{1}(x)$, so $A=\left\{x \mid p_{1}(x)\right\}, B$ the solution set of $p_{2}(x)$, so $B=\left\{x \mid p_{2}(x)\right\}$, and $C$ the solution set of $p_{3}(x)$, so $C=\left\{x \mid p_{3}(x)\right\}$.
(i) Find $A, B$ and $C$ in list form,
(ii) Find the solution set of $p_{1}(x) \wedge\left(\neg p_{2}(x)\right)$ in list form and express this set in terms of $A$ and $B$ and the set operations $\cap, \cup$ and ${ }^{c}$,
(iii) Find the solution set of $p_{1}(x) \vee p_{3}(x)$ in list form and express this set in terms of $A$ and $C$ and the set operations $\cap, \cup$ and ${ }^{c}$.
5) Let $A=\{x \in \mathbb{R}: x-1>2$ and $x<4\}$ and let $B=\left\{x \in \mathbb{R}: 5 \leq x^{2} \leq 20\right\}$. Show that if $x \in A$ then we have $x \in B$. Hence deduce that $A \subseteq B$.
6) Let $A=\left\{x \in \mathbb{R}: x^{2}-3 x+2<0\right\}$ and let $B=\{x \in \mathbb{R}: 1<x<2\}$. In the same way as in Question 6 show that $A \subseteq B$. Also show that $B \subseteq A$. Deduce that $A=B$.
7) Let $A, B$ and $C$ be subsets of a universal set $U$. Use only the Boolean laws of Logic to prove
(i) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$,
(ii) $A \cup\left(B^{c} \cup A^{c}\right)=\left(A^{c} \cup B\right)^{c}$,

Compare with Sheet 1 Question 8(i)
(iii) $A=A \cup A$,

Compare with Sheet 1 Question 8(iv)
(iv) $(A \cap B)^{c}=A^{c} \cup B^{c}$.

So do not use the Boolean laws of Set Theory.
8) Let $A$, and $B$ be subsets of a universal set $U$. Using only the Boolean laws of Set Theory simplify the following expressions
(i) $\left(A^{c} \cap B^{c}\right)^{c}$,
(ii) $A \cup\left(A^{c} \cap B\right)$,
(iii) $A^{c} \cup\left(A^{c} \cup B\right)^{c}$,
(iv) $A \cap A$.

Hint: Start with $A=A \cap U$ and use another law on $U$. Also, look back at your solution to Sheet 1, Question 8(iii).
9) Let $A=\{1,2,3,4,5,6,7\}$. Determine the number of
(i) subsets of $A$,
(ii) subsets containing three elements,
(iii) subsets containing the elements 1 and 2 ,
(iv) subsets containing an even number of elements. (Consider 0 to be an even number.)

