Question Sheet 2

1) Let r, s and t denote the propositions
r : Judith goes out for a walk,
s : The moon is out,
t : It is snowing.
Write the following in symbolic form
(i) If the moon is out and it is not snowing then Judith goes out for a walk,
(ii) It is not snowing if Judith goes out for a walk,
(iii) Judith goes out for a walk only if either the moon is out or it is snowing,
(iv) It is snowing if, and only if, either Judith does not go out for a walk or the moon is not out.
2) With r, s and t as in question 8, write the following propositions in English.
(i) $(r \wedge s) \leftrightarrow(\neg t)$,
(Be careful. Also write out $(\neg t) \leftrightarrow(r \wedge s)$ in English and compare.)
(ii) $t \rightarrow(s \rightarrow r)$,
(iii) $(t \wedge(\neg s)) \rightarrow \neg r$.
3) If A and B are false and C and D are true then what are the truth-values of the following propositions?
(i) $\quad(\neg B) \rightarrow(\neg(C \vee D))$,
(ii) $(A \leftrightarrow B) \rightarrow(C \leftrightarrow(\neg D))$,
(iii) $A \rightarrow(B \rightarrow(C \rightarrow D))$,
(iv) $((A \rightarrow B) \rightarrow C) \rightarrow D$.
4) Determine the truth-values of each of the following implications.
(i) If $3+4=12$ then $3+2=6$,
(ii) If $3+4=12$ then $3+2=5$,
(iii) If $3+4=7$ then $3+2=6$,
(iv) If $3+4=7$ then e is the fifth letter of the alphabet.
5) Which of the following propositional forms are tautologies?
(i) $\quad(p \vee q) \rightarrow(q \vee p)$,
(ii) $\quad p \rightarrow((p \vee q) \vee r)$,
(iii) $p \rightarrow(q \rightarrow(q \rightarrow p))$,
(iv) $((p \rightarrow q) \leftrightarrow q) \rightarrow p$,
(v) $\quad(p \wedge q) \rightarrow(p \vee r)$,
(vi) $(p \rightarrow q) \leftrightarrow(q \rightarrow p)$.
6) Show by truth tables that $p \wedge(q \vee r)$ and $(p \wedge q) \vee r$ are not equivalent and that $(p \wedge(q \vee r)) \rightarrow((p \wedge q) \vee r)$ is a tautology.
7) Prove, using truth tables
(i) $\quad p \rightarrow q \equiv(\neg q) \rightarrow(\neg p)$,
(ii) $\quad \neg(p \rightarrow q) \equiv p \wedge(\neg q)$,
(iii) $p \rightarrow q \equiv(\neg p) \vee q$,
(iv) $p \rightarrow q \equiv(p \wedge(\neg q)) \rightarrow O$.
(v) Using part (iii), find a form equivalent to $p \leftrightarrow q$ which only uses the \neg, \wedge and \vee connectives.
(It is because of parts (iii) and (v) that the Boolean laws of logic can be written without \rightarrow or \leftrightarrow.)
8) Prove, using question 7(iii) and other results from propositional logic, that

$$
r \rightarrow(p \rightarrow q) \equiv(p \wedge r) \rightarrow q .
$$

So, do not use truth tables.
9) The "exclusive or" connective $\underline{\vee}$ is defined such that $p \underline{\vee} q$ is true when either p or q are true but not both.
(i) Construct the truth table for $p \underline{\vee} q$,
(ii) In words we might say that " $p \underline{\vee} q$ is true" if, and only if, " $p \vee q$ is true and it is not the case that $p \wedge q$ is true". So we might think that

$$
p \underline{\vee} q \equiv(p \vee q) \wedge(\neg(p \wedge q)) .
$$

Use truth tables to show this is so.
(iii) Use part (ii) along with the Boolean Laws and any results needed from Sheet 1, Question 8, to show that

$$
p \underline{\vee} p \equiv O, \quad p \underline{\vee} I \equiv \neg p \quad \text { and } \quad p \underline{\vee} O \equiv p
$$

Do not use truth tables to show these hold.
(iv) Are either of the following true for all p, q ?

$$
\begin{aligned}
& p \underline{\vee}(q \wedge r) \equiv(p \vee q) \wedge(p \vee r), \\
& p \wedge(q \underline{\vee} r) \equiv(p \wedge q) \underline{\vee}(p \wedge r)
\end{aligned}
$$

Hint: Use truth tables.
Maybe you can now see why we use the "inclusive or" \vee in logic.
(v) Start with part (ii) and use DeMorgan's laws along with the distributive laws to show that

$$
p \underline{\vee} q \equiv(p \wedge(\neg q)) \vee((\neg p) \wedge q)
$$

Use this result to prove the valid equivalence in part (iv) without truth tables. (Hint: always start with the most complicated side.)

