Question Sheet 10

1) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{ccc}6 & 2 & 0 \\ 0 & -1 & 4\end{array}\right)$ and $C=\left(\begin{array}{ccc}-2 & 1 & -5 \\ 7 & 1 & 0\end{array}\right)$.

Where possible, evaluate the following
(i) $A B$,
(ii) $A C$,
(iii) $A B+A C$,
(iv) $B+C$,
(v) $A(B+C)$ (now compare (iii) and (v))
(vi) $B A$,
(vii) $B C$
(viii) $A^{2}(=A A)$,
(ix) B^{2}.
2) Find the inverses, where possible, of the following matrices.
(i) $\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$,
(ii) $\left(\begin{array}{rr}6 & 10 \\ 1 & 2\end{array}\right)$,
(iii) $\left(\begin{array}{rr}6 & -10 \\ -3 & 5\end{array}\right)$,
(iv) $\left(\begin{array}{rrr}6 & 4 & -5 \\ 11 & 3 & 1\end{array}\right)$,
(v) $\left(\begin{array}{rrr}1 & 4 & -1 \\ 0 & 3 & 5 \\ 2 & 3 & -10\end{array}\right)$.
3) Use the inverse from question 2(ii) to solve the following system of equations.

$$
\begin{aligned}
& 6 x_{1}+10 x_{2}=4 \\
& x_{1}+2 x_{2}=-3 .
\end{aligned}
$$

4) Solve the following systems of equations using Gaussian elimination on matrices.
(i)

$$
\begin{aligned}
& x-10 y=2 \\
& 3 x+4 y=6,
\end{aligned}
$$

(ii)

$$
\begin{aligned}
2 x_{1}+2 x_{2}-x_{3} & =13 \\
5 x_{1}+3 x_{2}+2 x_{3} & =8 \\
2 x_{1}+x_{2}+x_{3} & =5,
\end{aligned}
$$

(iii)

$$
\begin{array}{r}
-x+2 y+2 z=2 \\
x+3 y+z=-2 \\
-x+y+z=4 .
\end{array}
$$

(Remember, always check your answer by substituting back in.)
5) 512 K of memory is to be partitioned into three segments. The second segment is twice the length of the third and 3 K more than the first. What is the length of each segment?
6) Let $A=\left(\begin{array}{rrr}1 & 4 & -1 \\ 0 & 3 & 5 \\ 2 & 3 & -10\end{array}\right)$ and $B=\left(\begin{array}{cccc}10 & -7 & 0 & 1 \\ 2 & 0 & 1 & -5 \\ 4 & 3 & 0 & -5\end{array}\right)$.

If there exists a matrix X which satisfies $A X=B$ what is the size of X ?
Find X.

