2 Natural Deduction

A deductive proof is a step-by-step demonstration that a given argument is valid. At each step we apply *rules of inference*. We will justify the introduction of these rules by using truth tables to show that they arise from valid arguments, but it should be stressed that a proof of validity by deduction has no connection to a proof of validity by truth tables. We will come back to this point in Section 2.4.

The following rules should be memorised.

2.1 Rules I

A Rule of Assumption

At any step of the proof we can introduce any premise.

Note: Premises may be used more that once, or need not be used at all.

M.P.P. (Modus Ponendo Ponens) (Translate as: the method of affirming.)

 $p, p \rightarrow q \vdash q$ is valid, as can be seen by using truth tables (Ex 19(i)), so

If steps of the form p and $p \rightarrow q$ occur in the proof, then we can deduce q.

Note: we use the word 'form' because p and q might be built up from smaller propositions.

M.T.T. (Modus Tollendo Tollens) (Translate as: the method of denying.)

 $\neg q, p \rightarrow q \vdash \neg p$ is valid, (see Ex 19(ii)), so

If steps of the form $\neg q$ and $p \rightarrow q$ occur in the proof, then we can deduce $\neg p$.

D.N. (Double Negative)

 $p \equiv \neg (\neg p)$, so

If steps of the form \neg $(\neg p)$ occurs in the proof, then we can deduce p, and vice-versa.

Example 22 (i) Show that the following argument is valid.

$$(A \lor B) \to (C \lor D), \ A \lor B, \ (C \lor D) \to G \vdash G.$$

1	$A \lor B$	А
2	$(A \lor B) \to (C \lor D)$	А
3	$C \lor D$	MPP 1,2
4	$(C \lor D) \to G$	А
5	G	MPP $3,4$

Therefore the argument is valid.

(ii) Show that the following argument is valid.

$$\begin{array}{cccc} (A \lor B) \to (C \lor D), \neg \ (C \lor D), (\neg \ G) \to (A \lor B) \ \vdash \ G. \\ & 1 & \neg \ (C \lor D) & A \\ & 2 & (A \lor B) \to (C \lor D) & A \\ & 3 & \neg \ (A \lor B) & \text{MTT 1,2} \\ & 4 & (\neg \ G) \to (A \lor B) & A \\ & 5 & \neg \ (\neg \ G) & \text{MTT 3,4} \\ & 6 & G & & \text{DN 5} \end{array}$$

Example 21 (again) Show that the following argument is valid. $p \rightarrow (s \rightarrow (\neg r)), \ p \rightarrow r, \ p \vdash \neg s$

1	p	А
2	$p \rightarrow r$	А
3	r	MPP $1,2$
4	$p \to (s \to (\neg r))$	А
5	$s \to (\neg r)$	MPP $1,4$
6	$\neg (\neg r)$	DN 3
7	$\neg s$	MTT $5,6$

Therefore the argument is valid.

(Note how quick the proof is compared to using a truth table.)