7 Matrices

7.1 Definition

Definition A matrix is a rectangular array of numbers.

Example 81

$$
\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 20 & 0
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
4 \\
5
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

These are examples of $2 \times 3,3 \times 1$ and 2×2 matrices respectively, where the first number is the number of rows and the second the number of columns.

Note The number of rows $=$ length of the columns.
The number of columns $=$ lenth of the rows.
We often denote an $m \times n$ matrix A by $\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$, where $a_{i j}$ is the element on the $i^{\text {th }}$ row and $j^{\text {th }}$ column. So

$$
A=\left(\begin{array}{lllllll}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
a_{21} & & & & & & \vdots \\
a_{31} & & & & \vdots & & \vdots \\
\vdots & & & & & & \vdots \\
a_{i 1} & & \cdots & & a_{i j} & & \vdots \\
\vdots & & & & & & \vdots \\
a_{m 1} & \cdots & \cdots & \cdots & \cdots & \cdots & a_{m n}
\end{array}\right) .
$$

Definition We say that two matrices are equal, and write $A=B$ if, and only if, $a_{i j}=b_{i j}$ for all i, j. In particular, if the matrices are equal then they must be the same size.
Definition If A and B are the same size, $m \times n$ say, then $A+B$ is the $m \times n$ matrix $C=\left(c_{i j}\right)$ where $c_{i j}=a_{i j}+b_{i j}$ for all i, j.
Example 82

$$
\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 20 & 0
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 4 & 0 \\
10 & 0 & 20
\end{array}\right)=\left(\begin{array}{lll}
1 & 5 & 3 \\
11 & 20 & 20
\end{array}\right) .
$$

Note

$$
\left(\begin{array}{rrr}
2 & 1 & 3 \\
1 & 20 & 0
\end{array}\right)+\left(\begin{array}{rr}
10 & -1 \\
0 & 4 \\
20 & 0
\end{array}\right) \quad \begin{aligned}
& \text { is not defined since the } \\
& \text { matrices are different sizes. }
\end{aligned}
$$

Definition Let A and B be two matrices such that the length of the rows of A is equal to the length of the columns of B, that is A is $r \times s$ and B is $s \times t$ for some r, s and t. Then the scalar product of the $i^{\text {th }}$ row of A, $\left(a_{i 1}, a_{i 2}, \ldots, a_{i s}\right)$ with the $j^{\text {th }}$ column of $B,\left(b_{1 j}, b_{2 j}, \ldots, b_{s j}\right)$, is

$$
\left(a_{i 1}, a_{i 2}, \ldots, a_{i s}\right)\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{s j}
\end{array}\right)=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i s} b_{s j}=\sum_{k=1}^{s} a_{i k} b_{k j}
$$

(* Often call $\left(a_{i 1}, a_{i 2}, \ldots, a_{i s}\right)$ a row vector and

$$
\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{s j}
\end{array}\right)
$$

a column vector in which case the scalar product is known as a vector (inner) product.)
The matrix product $A B$ is the $r \times t$ matrix $C=\left(c_{i j}\right)$ where $c_{i j}=\sum_{k=1}^{s} a_{i k} b_{k j}$ is the scalar product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.

Example 83 (i) Scalar product.

$$
(1,2,-3)\left(\begin{array}{l}
5 \\
6 \\
2
\end{array}\right)=1 \times 5+2 \times 6+(-3) \times 2=5+12-5=11
$$

Yet

$$
(1,2)\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)
$$

is not defined since the row and columns are of different lengths.
(ii) Let

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right) \text { and } B=\left(\begin{array}{rrr}
8 & 5 & 3 \\
-5 & 1 & 0
\end{array}\right) \text {, then } \\
& A B=\left(\begin{array}{ll}
2 & 3 \\
1 & 5
\end{array}\right)\left(\begin{array}{rrr}
8 & 5 & 3 \\
-5 & 1 & 0
\end{array}\right) \\
&=\binom{\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{8}{-5}\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{5}{1}\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{3}{0}}{\left(\begin{array}{ll}
1 & 5
\end{array}\right)\binom{8}{-5}\left(\begin{array}{ll}
1 & 5
\end{array}\right)\binom{5}{1}\left(\begin{array}{ll}
1 & 5
\end{array}\right)\binom{3}{0}} \\
&=\left(\begin{array}{rr}
2 \times 8+3 \times(-5) & 2 \times 5+3 \times 1 \\
1 \times 8+5 \times(-5) & 1 \times 5+5 \times 3 \times 0 \\
1 \times 8 & 1 \times 3+5 \times 0
\end{array}\right) \\
&=\left(\begin{array}{rrr}
1 & 13 & 6 \\
-17 & 10 & 3
\end{array}\right) .
\end{aligned}
$$

Note $B A$ is not defined since the rows of B are a different length to the columns of A.

Example 84 Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{rr}
2 & 1 \\
1 & 0 \\
-1 & 1
\end{array}\right) .
$$

Then

$$
A B=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{rr}
2 & 1 \\
1 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{rr}
2 & 1 \\
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{rrr}
2 & 4 & 1 \\
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

So $A B$ and $B A$ are different sizes and so cannot be equal. Thus matrix multiplication is not commutative.

It can be shown that matrix multiplication is associative, so if A, B and C are matrices for which $(A B) C$ is defined then $A(B C)$ is defined and

$$
(A B) C=A(B C)
$$

We also have the distributive property so that if A is $m \times q$ and B, C are both $q \times n$, for some m, n and q, then

$$
A(B+C)=A B+A C .
$$

7.2 Identity

In \mathbb{R} the number 1 has a special property, namely that $1 x=x$ for all $x \in \mathbb{R}$. We say that 1 is a multiplicative identity, because it leaves unchanged any number multiplied by it.
(*Question for students: what is the additive identity in \mathbb{R} ?)
For matrices we note that $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 4 & 5\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 4 & 5\end{array}\right)$ and

$$
\left(\begin{array}{rrr}
4 & 5 & 6 \\
-1 & 0 & 2 \\
-4 & -3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{rrr}
4 & 5 & 6 \\
-1 & 0 & 2 \\
-4 & -3 & 2
\end{array}\right)
$$

Definition

The matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, etc., are Identity matrices.
Such matrices are always square with 1 on the leading diagonal and 0 elsewhere.

The $m \times m$ identity is denoted by I_{m}.
For a general $m \times r$ matrix A we will always have $I_{m} A=A$ while for any $s \times m$ matrix B we will have $B I_{m}=B$.

7.3 Inverses

For any non-zero number $x \in \mathbb{R}$ its inverse is that number y such that if you multiply x by y you get the identity. That is $x y=1$. For example, the inverse of 3 is $1 / 3$.

The same idea holds for matrices, but given a matrix A, if it has an inverse B then, because matrix multiplication is not commutative, we need to check that both $A B=I$ and $B A=I$. We restrict to square matrices. So Definition A square $n \times n$ matrix A has a multiplicative inverse, denoted by A^{-1}, if

$$
A A^{-1}=I_{n} \text { and } A^{-1} A=1_{n}
$$

We will see later that not all square matices have an inverse.

Example 85 The inverse of

$$
\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
1 & 3 & 2
\end{array}\right) \quad \text { is } \quad\left(\begin{array}{rrr}
8 & 5 & -7 \\
-2 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right) .
$$

Question How do we know this?
Answer We "verify" the definition. That is, we check that

$$
\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{rrr}
8 & 5 & -7 \\
-2 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right)=I_{3} \quad \text { and } \quad\left(\begin{array}{rrr}
8 & 5 & -7 \\
-2 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
1 & 3 & 2
\end{array}\right)=I_{3} .
$$

I leave it to the students to check this.
Question Why are inverses useful?

One of many possible Anwers:

7.4 Solving systems of linear equations

Example 86 Let $U=\mathbb{R}$. Then

$$
\begin{array}{ll}
6 x & =1 \\
5 x+7 y & =3 \\
\frac{1}{2} x_{1}+33.2 x_{2}+15 x_{3} & =\frac{33}{4}
\end{array}
$$

are all linear equations because the variables are not multiplied together and are not raised to any power different from 1 .

Example 86

$$
\begin{aligned}
x y & =1 \\
x^{2}+y^{2} & =2
\end{aligned}
$$

are not linear equations.

7.4.1 One Equation in one unknown

Example 88 Consider $6 x=2$.
Multiply both sides by the inverse of 6 , i.e. 6^{-1} or $\frac{1}{6}$ to get

$$
\begin{array}{ll}
& \frac{1}{6}(6 x)=\frac{1}{6} 2, \\
\text { that is } & x=\frac{1}{3} .
\end{array}
$$

7.4.2 Three Equations in three unknowns

Example 89 Find three real numbers x, y and z that simultaneously satisfy

$$
\begin{aligned}
x+2 y+3 z & =60 \\
y-2 z & =0 \\
x+3 y+2 z & =-4
\end{aligned}
$$

Solution The "trick" here is to write the system as one matrix equation.

$$
\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
60 \\
0 \\
-4
\end{array}\right)
$$

This eqation could be written as $A \mathbf{x}=\mathbf{c}$ where A, \mathbf{x} and \mathbf{c} are a matrices (${ }^{\mathbf{x}} \mathbf{x}, \mathbf{c}$ are also called column vectors).

Then just as in 7.4.1, if the inverse, A^{-1} exists, we can multiply both sides of the equation to get

$$
A^{-1} \mathbf{c}=A^{-1}(A \mathbf{x})=\left(A^{-1} A\right) \mathbf{x}=I \mathbf{x}=\mathbf{x}
$$

So the solution is given by $\mathbf{x}=A^{-1} \mathbf{c}$.
In this example

$$
A^{-1} \mathbf{c}=\left(\begin{array}{rrr}
8 & 5 & -7 \\
-2 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
60 \\
0 \\
-4
\end{array}\right)=\left(\begin{array}{c}
508 \\
-128 \\
-64
\end{array}\right) .
$$

So the solution is $x=508, y=-128$ and $z=-64$.
Question How do we know this is correct?
Answer Substitute it back in the original system. You should always, always do this!

I leave it to the student to do this.
Question How do we find inverses?

One of many possible Anwers:

7.5 Gaussian Elimination.

I will describe this method by way of an example.

Example 90 Find the inverse of

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & -2 \\
1 & 3 & 2
\end{array}\right)
$$

Solution. Start with the augmented matrix

$$
\left(\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 1 & 0 \\
1 & 3 & 2 & 0 & 0 & 1
\end{array}\right)=\left(A \mid I_{3}\right) \text {. }
$$

Our aim is to use row operations, consisting of

1. Multiplying a row by a non-zero scalar,
2. Replacing a row by the sum of it and another row,
3. Exchanging rows,
to tranform A into I_{3}. When these row operations are applied to the augmented matrix they will transform the I_{3} part. In fact it will be transformed into the inverse. (*No proof of this is give. You need to take it on trust.).

Lets see this in action.

$$
\begin{array}{ll}
r_{3} \rightarrow r_{3}-r_{1} & \left(\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 1
\end{array}\right) \\
r_{3} \rightarrow r_{3}-r_{2} & \left(\begin{array}{rrr|rrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \\
\begin{array}{l}
r_{1} \rightarrow r_{1}-3 r_{3} \\
r_{2} \rightarrow r_{2}+2 r_{3}
\end{array} & \left(\begin{array}{rrr|rrr}
1 & 2 & 0 & 4 & 3 & -3 \\
0 & 1 & 0 & -2 & -1 & 2 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \\
r_{1} \rightarrow r_{1}-2 r_{2}
\end{array}
$$

Hence

$$
A^{-1}=\left(\begin{array}{rrr}
8 & 5 & -7 \\
-2 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

Question How do I know in what order to apply the operations?

Answer There is no unique answer but you always keeps some aims in mind.
So, given a matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

you apply operations to make, in this order, a 1 in the 1-1 position (called the pivot). Then 0's below it, in the 2-1, 3-1 and 4-1 position. Then go to the next pivot and get a 1 in the $2-2$ position. Next get 0 's below in the $3-2$ and 4-2 postion. Onto the next pivot and get a 1 in the $3-3$ position and 0 's below it at the $4-3$ position. Next a 1 at the last pivot, the $4-4$ position. So half way through the matrix looks like

$$
\left(\begin{array}{llll}
1 & b_{12} & b_{13} & b_{14} \\
0 & 1 & b_{23} & b_{24} \\
0 & 0 & 1 & b_{34} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Finish off by making 0 's above the last pivot, i.e. 0's in the 3-4, 2-4 and $1-4$ position. Then onto the third column, i.e. 0 's in the $2-3$ and 1-3 position. Finally a 0 in the $1-2$ position.

Always, always approach the problem in this order.
Example 91 Find the inverse of

$$
\left(\begin{array}{lll}
8 & 4 & 1 \\
4 & 3 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

Solution Consider

$$
\left(\begin{array}{lll|lll}
8 & 4 & 1 & 1 & 0 & 0 \\
4 & 3 & 2 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right)
$$

We need to put a 1 in the $1-1$ position. We could multiply row 1 by $1 / 8$, but this would lead to fractions and I suggest you try to avoid fractions. They increase the possibilty of arithmetic errors. Instead, note the $4-3=1$. So try

$$
r_{2} \rightarrow r_{2}-r_{3} \quad\left(\begin{array}{rrr|rrr}
8 & 4 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & -1 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right),
$$

$$
r_{1} \leftrightarrow r_{2} \quad\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 1 & -1 \\
8 & 4 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Now have to put 0's below the first pivot. So

$$
\begin{array}{ll}
r_{2} \rightarrow r_{2}-8 r_{1} \\
r_{3} \rightarrow r_{3}-3 r_{1} & \left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 1 & -1 \\
0 & -4 & -7 & 1 & -8 & 8 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 0 & 1 & -1 \\
0 & -4 & -7 & 1 & -8 & 8 \\
0 & -1 & -2 & 0 & -3 & 4
\end{array}\right)
\end{array}
$$

Now a 1 in the next pivot, the $2-2$ position. Try

$$
r_{2} \rightarrow r_{2}-5 r_{3} \quad\left(\begin{array}{rrr|rrc}
1 & 1 & 1 & 0 & 1 & -1 \\
0 & 1 & 3 & 1 & 7 & -12 \\
0 & -1 & -2 & 0 & -3 & 4
\end{array}\right)
$$

Note In the last step we had the calculation $-4-5(-1)$. Be careful about these double negatives. Students often make arithmetic errors because of them.

Now a zero below the $2-2$ pivot, i.e. a 0 in the $3-2$ position.

$$
r_{3} \rightarrow r_{3}+r_{2} \quad\left(\begin{array}{ccc|ccl}
1 & 1 & 1 & 0 & 1 & -1 \\
0 & 1 & 3 & 1 & 7 & -12 \\
0 & 0 & 1 & 1 & 4 & -8
\end{array}\right)
$$

We already have a 1 in the $3-3$ pivot.
So need only get 0 's above it in the $2-3$ and $1-3$ positions.
Why not do both at once?

$$
\begin{aligned}
& r_{2} \rightarrow r_{2}-3 r_{3} \\
& r_{1} \rightarrow r_{1}-r_{3}
\end{aligned} \quad\left(\begin{array}{rrr|rrc}
1 & 1 & 0 & -1 & -3 & 7 \\
0 & 1 & 0 & -2 & -5 & 12 \\
0 & 0 & 1 & 1 & 4 & -8
\end{array}\right)
$$

We already have a 1 in the $2-2$ pivot.
So need only get a 0 above it.

$$
r_{1} \rightarrow r_{1}-r_{2} \quad\left(\begin{array}{ccc|rrc}
1 & 0 & 0 & 1 & 2 & -5 \\
0 & 1 & 0 & -2 & -5 & 12 \\
0 & 0 & 1 & 1 & 4 & -8
\end{array}\right)
$$

Thus the inverse is

$$
\left(\begin{array}{rrc}
1 & 2 & -5 \\
-2 & -5 & 12 \\
1 & 4 & -8
\end{array}\right)
$$

Remember Always, always check your anwer by multiplying out.
Example 92 Solve the system of equations

$$
\begin{aligned}
8 x+4 y+z & =2 \\
4 x+3 y+2 z & =3 \\
3 x+2 y+z & =-2 .
\end{aligned}
$$

Solution This system can be written as

$$
\left(\begin{array}{lll}
8 & 4 & 1 \\
4 & 3 & 2 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
2 \\
3 \\
-2
\end{array}\right)
$$

So the answer is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrc}
1 & 2 & -5 \\
-2 & -5 & 12 \\
1 & 4 & -8
\end{array}\right)\left(\begin{array}{r}
2 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{r}
18 \\
-43 \\
30
\end{array}\right)
$$

Remember. Always, always check your answer by substituting back in.
Example 93 Find the inverse of

$$
\left(\begin{array}{rr}
1 & 2 \\
-2 & -4
\end{array}\right)
$$

Solution Consider

$$
\left(\begin{array}{rr|rr}
1 & 2 & 1 & 0 \\
-2 & -4 & 0 & 1
\end{array}\right) .
$$

We have a 1 in the $1-1$ pivot so we next get a 0 in the position below it. This can be done in only one way.

$$
r_{2} \rightarrow r_{2}+2 r_{1} \quad\left(\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right) .
$$

This row of zeros shows that we will never be able to get the identity in the first half of the augmented matrix. This is an example of a matrix with no inverse.

*Additional Material (Not for examination).

If we simply want to solve a system of equations and not find the inverse of the matrix we can do the following:

Example 94 Find real numbers x, y and z that simultaneously satisfy

$$
\begin{aligned}
2 x-8 y+37 z & =101 \\
x-3 y+15 z & =41 \\
-x+4 y-17 z & =-46 .
\end{aligned}
$$

Solution. Consider a different type of augmented matrix:

$$
\left(\begin{array}{rrr|r}
2 & -8 & 37 & 101 \\
1 & -3 & 15 & 41 \\
-1 & 4 & -17 & -46
\end{array}\right)
$$

First aim: To start from the left and first get a 1 in 1-1 position.
We can do this in at least three different ways.
(1) Multiplying r_{1} by $\frac{1}{2}$,
(2) adding the third row to the first, or
(3) exchange the first and second rows.

I do not like (1) since I do not like to have fractions unless I have to have them. I do not like (2) since the more operations we do, such as addition, the more chance there is for a mistake. This leaves us with (3).

$$
\underset{\text { swap }}{r_{1}} \longleftrightarrow r_{2}\left(\begin{array}{rrr|c}
1 & -3 & 15 & 41 \\
2 & -8 & 37 & 101 \\
-1 & 4 & -17 & -46
\end{array}\right)
$$

Next aim: get 0's below the 1-1 pivot by applying row operations to r_{2} and r_{3}.

$$
\begin{aligned}
& r_{2} \rightarrow r_{2}-2 r_{1} \\
& r_{3} \rightarrow r_{3}+r_{1}
\end{aligned} \quad\left(\begin{array}{rrr|r}
1 & -3 & 15 & 41 \\
0 & -2 & 7 & 19 \\
0 & 1 & -2 & -5
\end{array}\right)
$$

Aim: we now look in the second column and try to get a 1 in the 2-2 position. This we do by swapping the second and third rows.

$$
r_{2} \longleftrightarrow r_{3} \quad\left(\begin{array}{rrr|l}
1 & -3 & 15 & 41 \\
0 & 1 & -2 & -5 \\
0 & -2 & 7 & 19
\end{array}\right)
$$

Next we aim to get zeros in that part of the column below the diagonal entry. There is only one position in that part of the column, namely the 3-2 position. We make this position zero by adding twice the second row to the third row.

$$
r_{3} \longleftrightarrow r_{3}+2 r_{2} \quad\left(\begin{array}{rrr|r}
1 & -3 & 15 & 41 \tag{1}\\
0 & 1 & -2 & -5 \\
0 & 0 & 3 & 9
\end{array}\right)
$$

We now move to the third column and first try to get a 1 in the diagonal position, i.e. the 3-3 position. We already have a non-zero term on the diagonal in the third column. We can make this value 1 by multiplying r_{3} by a third. I don't mind multiplying by a fraction because the only other non-zero term is the 9 which becomes 3 , an integer.

$$
r_{3} \rightarrow \frac{1}{3} r_{3} \quad\left(\begin{array}{rrr|r}
1 & -3 & 15 & 41 \\
0 & 1 & -2 & -5 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Next aim: get 0's above the final pivot.

$$
\begin{aligned}
& r_{1} \rightarrow r_{1}-15 r_{3} \\
& r_{2} \rightarrow r_{2}+2 r_{3}
\end{aligned} \quad\left(\begin{array}{rrr|r}
1 & -3 & 0 & -4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Finally, get 0 in column above the 2-2 pivot

$$
r_{1} \rightarrow r_{1}+3 r_{2} \quad\left(\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

Hence solution is $x=-1, y=1$ and $z=3$.
Always, always check your answer by substituting back into the original system of equations.

* Back Substitution

We can speed up the process of solving systems of equations further by stopping when A is reduced to an upper triangular matrix, as we saw in equation (1) above. For if we write out the equations represented by the matrix equation (1), we find

$$
\begin{aligned}
x-3 y+15 z & =41 \\
y-2 z & =-5 \\
3 z & =9 .
\end{aligned}
$$

From the third equation we see that $z=3$. We can substitute this into the second equation to find that $y-2 \times 3=-5$, so $y=1$.

Substituting these values into the first equation gives $x-3 \times 1+15 \times 3=$ 41 , and so $x=-1$.

* No Inverse

Consider

$$
\begin{array}{cc}
x+2 y & =1 \\
-2 x-4 y & =1
\end{array}
$$

We do Gaussian elimination on the augmented matrix.

$$
\left(\begin{array}{rr|r}
1 & 2 & 1 \\
-2 & -4 & 1
\end{array}\right), \quad \text { after } \quad r_{2} \rightarrow r_{2}+2 r_{1} \quad \text { we get }\left(\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 0 & 3
\end{array}\right) .
$$

It is impossible to find solutions of the two equations represented by this new augmented matrix. The last line represents the equation $0 x+0 y=3$ which has no solutions. Hence our original system of equations has no solutions.

Or, consider

$$
\begin{array}{cc}
x+2 y & =1 \\
-2 x-4 y & =-2
\end{array}
$$

When we do Gaussian elimination this time on

$$
\left(\begin{array}{rr|r}
1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right), \quad \text { after } \quad r_{2} \rightarrow r_{2}+2 r_{1} \quad \text { we get } \quad\left(\begin{array}{ll|r}
1 & 2 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Of the two equations represented here the second reads $0 x+0 y=0$ which is satisfied for all x and y. So we are left with just one non-trivial equation, $x+$ $2 y=1$, which has infinitely many solutions i.e. $(x, y)=(1,0),(-1,1),(-3,2)$ etc. Hence our original system of equations has infinitely many solutions.

