
7 Matrices
7.1 Definition
Definition A matrix is a rectangular array of numbers.

Example 81(
2 1 3
1 20 0

)
,

 2
4
5

 ,

(
1 0
0 1

)
.

These are examples of 2× 3, 3× 1 and 2× 2 matrices respectively, where
the first number is the number of rows and the second the number of columns.

Note The number of rows = length of the columns.
The number of columns = lenth of the rows.

We often denote an m× n matrix A by (aij)1≤i≤m,1≤j≤n, where aij is the

element on the ith row and jth column. So

A =



a11 a12 a13 · · · a1j · · · a1n

a21
...

a31
...

...
...

...

ai1 · · · aij
...

...
...

am1 · · · · · · · · · · · · · · · amn


.

Definition We say that two matrices are equal, and write A = B if, and
only if, aij = bij for all i, j. In particular, if the matrices are equal then they
must be the same size.

Definition If A and B are the same size, m×n say, then A+B is the m×n
matrix C = (cij) where cij = aij + bij for all i, j.

Example 82(
2 1 3
1 20 0

)
+

(
−1 4 0
10 0 20

)
=

(
1 5 3
11 20 20

)
.

Note

(
2 1 3
1 20 0

)
+

 10 −1
0 4

20 0

 is not defined since the
matrices are different sizes.
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Definition Let A and B be two matrices such that the length of the rows
of A is equal to the length of the columns of B, that is A is r × s and B
is s × t for some r, s and t. Then the scalar product of the ith row of A,
(ai1, ai2, . . . , ais) with the jth column of B, (b1j, b2j, . . . , bsj), is

(ai1, ai2, . . . , ais)


b1j

b2j
...

bsj

 = ai1b1j + ai2b2j + . . . + aisbsj =
s∑

k=1

aikbkj.

(* Often call (ai1, ai2, . . . , ais) a row vector and
b1j

b2j
...

bsj


a column vector in which case the scalar product is known as a vector (inner)
product.)

The matrix product AB is the r× t matrix C = (cij) where cij =
s∑

k=1

aikbkj is

the scalar product of the ith row of A with the jth column of B.

Example 83 (i) Scalar product.

(1, 2,−3)

 5
6
2

 = 1× 5 + 2× 6 + (−3)× 2 = 5 + 12− 5 = 11.

Yet

(1, 2)

 1
−2
0


is not defined since the row and columns are of different lengths.
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(ii) Let

A =

(
2 3
1 5

)
and B =

(
8 5 3
−5 1 0

)
, then

AB =

(
2 3
1 5

) (
8 5 3
−5 1 0

)

=


(

2 3
) (

8
−5

) (
2 3

) (
5
1

) (
2 3

) (
3
0

)
(

1 5
) (

8
−5

) (
1 5

) (
5
1

) (
1 5

) (
3
0

)


=

(
2× 8 + 3× (−5) 2× 5 + 3× 1 2× 3 + 3× 0
1× 8 + 5× (−5) 1× 5 + 5× 1 1× 3 + 5× 0

)
=

(
1 13 6
−17 10 3

)
.

Note BA is not defined since the rows of B are a different length to the
columns of A.

Example 84 Let

A =

(
1 1 0
0 2 1

)
and B =

 2 1
1 0
−1 1

 .

Then

AB =

(
1 1 0
0 2 1

)  2 1
1 0
−1 1

 =

(
3 1
1 1

)
,

and

BA =

 2 1
1 0
−1 1

 (
1 1 0
0 2 1

)
=

 2 4 1
1 1 0
−1 1 1

 .

So AB and BA are different sizes and so cannot be equal. Thus matrix
multiplication is not commutative.

It can be shown that matrix multiplication is associative, so if A, B and
C are matrices for which (AB)C is defined then A(BC) is defined and

(AB)C = A(BC).

We also have the distributive property so that if A is m× q and B, C are
both q × n, for some m,n and q, then

A(B + C) = AB + AC.
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7.2 Identity
In R the number 1 has a special property, namely that 1x = x for all

x ∈ R. We say that 1 is a multiplicative identity, because it leaves unchanged
any number multiplied by it.

(*Question for students: what is the additive identity in R?)

For matrices we note that

(
1 0
0 1

) (
2 3 1
1 4 5

)
=

(
2 3 1
1 4 5

)
and 4 5 6

−1 0 2
−4 −3 2

  1 0 0
0 1 0
0 0 1

 =

 4 5 6
−1 0 2
−4 −3 2

 .

Definition

The matrices

(
1 0
0 1

)
,

 1 0 0
0 1 0
0 0 1

 , etc., are Identity matrices.

Such matrices are always square with 1 on the leading diagonal and 0
elsewhere.

The m×m identity is denoted by Im.

For a general m× r matrix A we will always have ImA = A while for any
s×m matrix B we will have BIm = B.

7.3 Inverses
For any non-zero number x ∈ R its inverse is that number y such that if

you multiply x by y you get the identity. That is xy = 1. For example, the
inverse of 3 is 1/3.

The same idea holds for matrices, but given a matrix A, if it has an
inverse B then, because matrix multiplication is not commutative, we need
to check that both AB = I and BA = I. We restrict to square matrices. So

Definition A square n × n matrix A has a multiplicative inverse, denoted
by A−1, if

AA−1 = In and A−1A = 1n

We will see later that not all square matices have an inverse.
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Example 85 The inverse of 1 2 3
0 1 −2
1 3 2

 is

 8 5 −7
−2 −1 2
−1 −1 1

 .

Question How do we know this?

Answer We “verify” the definition. That is, we check that

 1 2 3
0 1 −2
1 3 2

  8 5 −7
−2 −1 2
−1 −1 1

 = I3 and

 8 5 −7
−2 −1 2
−1 −1 1

  1 2 3
0 1 −2
1 3 2

 = I3.

I leave it to the students to check this.

Question Why are inverses useful?

One of many possible Anwers:

7.4 Solving systems of linear equations
Example 86 Let U = R. Then

6x = 1,
5x + 7y = 3,

1
2
x1 + 33.2x2 + 15x3 =

33

4
,

are all linear equations because the variables are not multiplied together and
are not raised to any power different from 1.

Example 86

xy = 1,
x2 + y2 = 2,

are not linear equations.

7.4.1 One Equation in one unknown
Example 88 Consider 6x = 2.

Multiply both sides by the inverse of 6, i.e. 6−1 or 1
6

to get

1
6
(6x) = 1

6
2,

that is x = 1
3
.
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7.4.2 Three Equations in three unknowns
Example 89 Find three real numbers x, y and z that simultaneously satisfy

x + 2y + 3z = 60

y − 2z = 0

x + 3y + 2z = −4

Solution The “trick” here is to write the system as one matrix equation. 1 2 3
0 1 −2
1 3 2

  x
y
z

 =

 60
0
−4

 .

This eqation could be written as Ax = c where A,x and c are a matrices
(* x, c are also called column vectors).

Then just as in 7.4.1, if the inverse, A−1 exists, we can multiply both
sides of the equation to get

A−1c = A−1(Ax) =
(
A−1A

)
x = Ix = x.

So the solution is given by x = A−1c.
In this example

A−1c =

 8 5 −7
−2 −1 2
−1 −1 1

  60
0
−4

 =

 508
−128
−64

 .

So the solution is x = 508, y = −128 and z = −64.

Question How do we know this is correct?

Answer Substitute it back in the original system. You should always, always
do this!

I leave it to the student to do this.

Question How do we find inverses?

One of many possible Anwers:

7.5 Gaussian Elimination.

I will describe this method by way of an example.
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Example 90 Find the inverse of

A =

 1 2 3
0 1 −2
1 3 2

 .

Solution. Start with the augmented matrix 1 2 3
0 1 −2
1 3 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 = (A| I3) .

Our aim is to use row operations, consisting of

1. Multiplying a row by a non-zero scalar,

2. Replacing a row by the sum of it and another row,

3. Exchanging rows,

to tranform A into I3. When these row operations are applied to the aug-
mented matrix they will transform the I3 part. In fact it will be transformed
into the inverse. (*No proof of this is give. You need to take it on trust.).

Lets see this in action.

r3 → r3 − r1

 1 2 3
0 1 −2
0 1 −1

∣∣∣∣∣∣
1 0 0
0 1 0
−1 0 1


r3 → r3 − r2

 1 2 3
0 1 −2
0 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
−1 −1 1


r1 → r1 − 3r3

r2 → r2 + 2r3

 1 2 0
0 1 0
0 0 1

∣∣∣∣∣∣
4 3 −3
−2 −1 2
−1 −1 1


r1 → r1 − 2r2

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
8 5 −7
−2 −1 2
−1 −1 1


Hence

A−1 =

 8 5 −7
−2 −1 2
−1 −1 1

 .

Question How do I know in what order to apply the operations?
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Answer There is no unique answer but you always keeps some aims in mind.
So, given a matrix 

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


you apply operations to make, in this order, a 1 in the 1-1 position (called
the pivot). Then 0’s below it, in the 2-1, 3-1 and 4-1 position. Then go to
the next pivot and get a 1 in the 2-2 position. Next get 0’s below in the 3-2
and 4-2 postion. Onto the next pivot and get a 1 in the 3-3 position and 0’s
below it at the 4-3 position. Next a 1 at the last pivot, the 4-4 position. So
half way through the matrix looks like

1 b12 b13 b14

0 1 b23 b24

0 0 1 b34

0 0 0 1


Finish off by making 0’s above the last pivot, i.e. 0’s in the 3-4, 2-4 and

1-4 position. Then onto the third column, i.e. 0’s in the 2-3 and 1-3 position.
Finally a 0 in the 1-2 position.

Always, always approach the problem in this order.

Example 91 Find the inverse of 8 4 1
4 3 2
3 2 1


Solution Consider  8 4 1

4 3 2
3 2 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


We need to put a 1 in the 1-1 position. We could multiply row 1 by 1/8,

but this would lead to fractions and I suggest you try to avoid fractions.
They increase the possibilty of arithmetic errors. Instead, note the 4−3 = 1.
So try

r2 → r2 − r3

 8 4 1
1 1 1
3 2 1

∣∣∣∣∣∣
1 0 0
0 1 −1
0 0 1

 ,
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r1 ↔ r2

 1 1 1
8 4 1
3 2 1

∣∣∣∣∣∣
0 1 −1
1 0 0
0 0 1

 .

Now have to put 0’s below the first pivot. So

r2 → r2 − 8r1

 1 1 1
0 −4 −7
3 2 1

∣∣∣∣∣∣
0 1 −1
1 −8 8
0 0 1


r3 → r3 − 3r1

 1 1 1
0 −4 −7
0 −1 −2

∣∣∣∣∣∣
0 1 −1
1 −8 8
0 −3 4


Now a 1 in the next pivot, the 2-2 position. Try

r2 → r2 − 5r3

 1 1 1
0 1 3
0 −1 −2

∣∣∣∣∣∣
0 1 −1
1 7 −12
0 −3 4


Note In the last step we had the calculation −4− 5(−1). Be careful about
these double negatives. Students often make arithmetic errors because of
them.

Now a zero below the 2-2 pivot, i.e. a 0 in the 3-2 position.

r3 → r3 + r2

 1 1 1
0 1 3
0 0 1

∣∣∣∣∣∣
0 1 −1
1 7 −12
1 4 −8


We already have a 1 in the 3-3 pivot.
So need only get 0’s above it in the 2-3 and 1-3 positions.
Why not do both at once?

r2 → r2 − 3r3

r1 → r1 − r3

 1 1 0
0 1 0
0 0 1

∣∣∣∣∣∣
−1 −3 7
−2 −5 12

1 4 −8


We already have a 1 in the 2-2 pivot.
So need only get a 0 above it.

r1 → r1 − r2

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1 2 −5
−2 −5 12

1 4 −8

 .

Thus the inverse is  1 2 −5
−2 −5 12

1 4 −8

 .
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Remember Always, always check your anwer by multiplying out.

Example 92 Solve the system of equations

8x + 4y + z = 2

4x + 3y + 2z = 3

3x + 2y + z = −2.

Solution This system can be written as 8 4 1
4 3 2
3 2 1

  x
y
z

 =

 2
3
−2


So the answer is x

y
z

 =

 1 2 −5
−2 −5 12

1 4 −8

  2
3
−2

 =

 18
−43

30


Remember. Always, always check your answer by substituting back in.

Example 93 Find the inverse of(
1 2
−2 −4

)
Solution Consider (

1 2
−2 −4

∣∣∣∣ 1 0
0 1

)
.

We have a 1 in the 1-1 pivot so we next get a 0 in the position below it.
This can be done in only one way.

r2 → r2 + 2r1

(
1 2
0 0

∣∣∣∣ 1 0
2 1

)
.

This row of zeros shows that we will never be able to get the identity in
the first half of the augmented matrix. This is an example of a matrix with
no inverse.

*Additional Material (Not for examination).

If we simply want to solve a system of equations and not find the inverse
of the matrix we can do the following:
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Example 94 Find real numbers x, y and z that simultaneously satisfy

2x− 8y + 37z = 101
x− 3y + 15z = 41
−x + 4y − 17z = −46.

Solution. Consider a different type of augmented matrix: 2 −8 37
1 −3 15
−1 4 −17

∣∣∣∣∣∣
101
41
−46


First aim: To start from the left and first get a 1 in 1-1 position.

We can do this in at least three different ways.

(1) Multiplying r1 by 1
2
,

(2) adding the third row to the first, or

(3) exchange the first and second rows.

I do not like (1) since I do not like to have fractions unless I have to have
them. I do not like (2) since the more operations we do, such as addition,
the more chance there is for a mistake. This leaves us with (3).

r1 ←→ r2

swap

 1 −3 15
2 −8 37
−1 4 −17

∣∣∣∣∣∣
41
101
−46


Next aim: get 0’s below the 1-1 pivot by applying row operations to r2 and
r3.

r2 → r2 − 2r1

r3 → r3 + r1

 1 −3 15
0 −2 7
0 1 −2

∣∣∣∣∣∣
41
19
−5


Aim: we now look in the second column and try to get a 1 in the 2-2 position.
This we do by swapping the second and third rows.

r2 ←→ r3

 1 −3 15
0 1 −2
0 −2 7

∣∣∣∣∣∣
41
−5
19


Next we aim to get zeros in that part of the column below the diagonal

entry. There is only one position in that part of the column, namely the 3-2
position. We make this position zero by adding twice the second row to the
third row.

r3 ←→ r3 + 2r2

 1 −3 15
0 1 −2
0 0 3

∣∣∣∣∣∣
41
−5

9

 (1)
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We now move to the third column and first try to get a 1 in the diagonal
position, i.e. the 3-3 position. We already have a non-zero term on the
diagonal in the third column. We can make this value 1 by multiplying r3

by a third. I don’t mind multiplying by a fraction because the only other
non-zero term is the 9 which becomes 3, an integer.

r3 → 1
3
r3

 1 −3 15
0 1 −2
0 0 1

∣∣∣∣∣∣
41
−5

3


Next aim: get 0’s above the final pivot.

r1 → r1 − 15r3

r2 → r2 + 2r3

 1 −3 0
0 1 0
0 0 1

∣∣∣∣∣∣
−4

1
3


Finally, get 0 in column above the 2-2 pivot

r1 → r1 + 3r2

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−1

1
3


Hence solution is x = −1, y = 1 and z = 3.

Always, always check your answer by substituting back into the original
system of equations.

* Back Substitution

We can speed up the process of solving systems of equations further by
stopping when A is reduced to an upper triangular matrix, as we saw in
equation (1) above. For if we write out the equations represented by the
matrix equation (1), we find

x− 3y + 15z = 41

y − 2z = −5

3z = 9.

From the third equation we see that z = 3. We can substitute this into
the second equation to find that y − 2× 3 = −5, so y = 1.

Substituting these values into the first equation gives x−3×1+15×3 =
41, and so x = −1.
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* No Inverse

Consider

x + 2y = 1
−2x− 4y = 1.

We do Gaussian elimination on the augmented matrix.(
1 2
−2 −4

∣∣∣∣ 1
1

)
, after r2 → r2 + 2r1 we get

(
1 2
0 0

∣∣∣∣ 1
3

)
.

It is impossible to find solutions of the two equations represented by this new
augmented matrix. The last line represents the equation 0x + 0y = 3 which
has no solutions. Hence our original system of equations has no solutions.

Or, consider

x + 2y = 1
−2x− 4y = −2

When we do Gaussian elimination this time on(
1 2
−2 −4

∣∣∣∣ 1
−2

)
, after r2 → r2 + 2r1 we get

(
1 2
0 0

∣∣∣∣ 1
0

)
.

Of the two equations represented here the second reads 0x + 0y = 0 which is
satisfied for all x and y. So we are left with just one non-trivial equation, x+
2y = 1, which has infinitely many solutions i.e. (x, y) = (1, 0), (−1, 1), (−3, 2)
etc. Hence our original system of equations has infinitely many solutions.
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