6.4 Composition and Inverses

Definition

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions the we define the composite function, $g \circ f: A \rightarrow C$ by $(g \circ f)(a)=g(f(a))$ for each $a \in A$.

Example 78

(1)

So

$$
\begin{aligned}
g \circ f(1) & =g(f(1))=g(b)=\gamma \\
g \circ f(2) & =g(f(2))=g(b)=\gamma \\
g \circ f(3) & =g(f(3))=g(a)=\beta \\
g \circ f(4) & =g(f(4))=g(c)=\alpha
\end{aligned}
$$

(2) Define $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}-1$ and $g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x+1$. Then

$$
(g \circ f)(x)=g(f(x))=g\left(x^{2}-1\right)=\left(x^{2}-1\right)+1=x^{2}
$$

and

$$
(f \circ g)(x)=f(g(x))=f(x+1)=(x+1)^{2}-1=x^{2}+2 x
$$

Note that $g \circ f(1)=1^{2}=1$ while $f \circ g(1)=1^{2}+2=3$ and so $g \circ f(1) \neq$ $f \circ g(1)$ and thus $g \circ f \neq f \circ g$. Hence composition of functions need not be commutative.

Definition

The identity function, 1_{A}, on a set A satisfies $1_{A}(a)=a$ for all $a \in A$.

Definition

A function $f: A \rightarrow B$ has an inverse function if, and only if, there exists a function $g: B \rightarrow A$ such that both $g \circ f$, which maps from $A \rightarrow B \rightarrow A$, i.e. from $A \rightarrow A$, is the identity function on A and $f \circ g$, which maps from $B \rightarrow A \rightarrow B$, i.e. from $B \rightarrow B$, is the identity function on B. That is $g \circ f=1_{A}$ and $f \circ g=1_{B}$. If the inverse function exists we label it as f^{-1}.

Result: If f has an inverse then f is a bijection.
*Proof (not for examination)
Assume $f: A \rightarrow B$ has an inverse.
(i) Given $b \in B$, take $a=f^{-1}(b)$ then

$$
\begin{aligned}
f(a) & =f\left(f^{-1}(b)\right) \\
& =\left(f \circ f^{-1}\right)(b) \\
& =1_{B}(b) \\
& =b
\end{aligned}
$$

Thus f maps onto b. This is true for all $b \in B$, so f maps onto B, i.e. f is an onto function.
(ii) By definition of f^{-1} we have

$$
\left(f^{-1} \circ f\right)(a)=1_{A}(a)=a \forall a \in A
$$

Assume

$$
f\left(a_{1}\right)=f\left(a_{2}\right)
$$

Apply f^{-1} to both sides. Then

$$
\begin{array}{lc}
& f^{-1}\left(f\left(a_{1}\right)\right)=f^{-1}\left(f\left(a_{2}\right)\right) \\
\text { i.e } & \left(f^{-1} \circ f\right)\left(a_{1}\right)=\left(f^{-1} \circ f\right)\left(a_{2}\right) \\
\text { i.e. } & 1_{A}\left(a_{1}\right)=1_{A}\left(a_{2}\right) \\
\text { hence } & a_{1}=a_{2} .
\end{array}
$$

Thus

$$
f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}
$$

Therefore f is $1-1$.
So, if $f: A \rightarrow B$ has an inverse we can conclude that f is a bijection. In other words, only bijections have inverses.

Example 79

Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by the diagram

or, as a formula,

$$
f(n)=\left\{\begin{array}{cl}
\frac{n-1}{2} & \text { if } n \text { is odd } \\
-\frac{n}{2} & \text { if } n \text { is even }
\end{array}\right.
$$

This is a bijection and has inverse $g: \mathbb{Z} \rightarrow \mathbb{N}$ given by

$$
g(n)=\left\{\begin{array}{cc}
2 n+1 & \text { if } n \geq 0 \\
-2 n & \text { if } n<0 .
\end{array}\right.
$$

Check that $g \circ f=1_{\mathbb{N}}$. This requires two cases. In the first n is odd when

$$
\begin{array}{rlr}
g \circ f(n) & =g(f(n)) & \\
& =g\left(\frac{n-1}{2}\right) & \\
& =2\left(\frac{n-1}{2}\right)+1 & \text { since } \frac{n-1}{2} \geq 0 \\
& =n . &
\end{array}
$$

In the second case n is even when

$$
\begin{array}{rlr}
g \circ f(n) & =g(f(n)) & \\
& =g\left(-\frac{n}{2}\right) & \\
& =-2\left(-\frac{n}{2}\right) & \text { since }-\frac{n}{2}<0, \\
& =n . &
\end{array}
$$

In all cases $g \circ f(n)=n$ and so $g \circ f=1_{\mathbb{N}}$.

To check that $f \circ g=1_{\mathbb{Z}}$ we again have two cases though this time they are $n \geq 0$ and $n<0$. In the first case

$$
\begin{aligned}
f \circ g(n) & =f(g(n)) & \\
& =f(2 n+1), & \text { since } n \geq 0, \\
& =\frac{(2 n+1)-1}{2}, & \text { since } 2 n+1 \text { is odd, } \\
& =n . &
\end{aligned}
$$

In the second case, when $n<0$ we get

$$
\begin{array}{rlrl}
f \circ g(n) & =f(g(n)) & \\
& =f(-2 n), & \text { since } n<0, \\
& =-\frac{(-2 n)}{2}, & & \text { since }-2 n \text { is even, } \\
& =n .
\end{array}
$$

Thus $f \circ g(n)=n$ for all $n \in \mathbb{Z}$ and so $f \circ g=1_{\mathbb{Z}}$.
Example 80 (c.f. Example 77(5))
The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{2 x-1}{3}
$$

has inverse

$$
g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{3 x+1}{2}
$$

Check:

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g\left(\frac{2 x-1}{3}\right)=\frac{3\left(\frac{2 x-1}{3}\right)+1}{2} \\
& =\frac{(2 x-1)+1}{2}=x=1_{\mathbb{R}}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f\left(\frac{3 x+1}{2}\right)=\frac{2\left(\frac{3 x+1}{2}\right)-1}{3} \\
& =\frac{(3 x+1)-1}{3}=x=1_{\mathbb{R}}(x) .
\end{aligned}
$$

