6.4 Composition and Inverses

Definition

If $f : A \to B$ and $g : B \to C$ are functions the we define the *composite* function, $g \circ f : A \to C$ by $(g \circ f)(a) = g(f(a))$ for each $a \in A$.

Example 78

(1)

 So

 $\begin{array}{rcl} g\circ f\,(1) &=& g\,(f\,(1)) = g\,(b) = \gamma, \\ g\circ f\,(2) &=& g\,(f\,(2)) = g\,(b) = \gamma, \\ g\circ f\,(3) &=& g\,(f\,(3)) = g\,(a) = \beta, \\ g\circ f\,(4) &=& g\,(f\,(4)) = g\,(c) = \alpha. \end{array}$

(2) Define $f : \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2 - 1$ and $g : \mathbb{R} \to \mathbb{R}, \ x \mapsto x + 1$. Then

$$(g \circ f)(x) = g(f(x)) = g(x^2 - 1) = (x^2 - 1) + 1 = x^2$$

and

$$(f \circ g)(x) = f(g(x)) = f(x+1) = (x+1)^2 - 1 = x^2 + 2x.$$

Note that $g \circ f(1) = 1^2 = 1$ while $f \circ g(1) = 1^2 + 2 = 3$ and so $g \circ f(1) \neq f \circ g(1)$ and thus $g \circ f \neq f \circ g$. Hence composition of functions need *not* be commutative.

Definition

The *identity function*, 1_A , on a set A satisfies $1_A(a) = a$ for all $a \in A$.

Definition

A function $f : A \to B$ has an *inverse function* if, and only if, there exists a function $g : B \to A$ such that both $g \circ f$, which maps from $A \to B \to A$, i.e. from $A \to A$, is the identity function on A and $f \circ g$, which maps from $B \to A \to B$, i.e. from $B \to B$, is the identity function on B. That is $g \circ f = 1_A$ and $f \circ g = 1_B$. If the inverse function exists we label it as f^{-1} .

Result: If f has an inverse then f is a bijection.

***Proof** (not for examination)

Assume $f : A \to B$ has an inverse.

(i) Given $b \in B$, take $a = f^{-1}(b)$ then

$$f(a) = f(f^{-1}(b)) = (f \circ f^{-1})(b) = 1_B(b) = b$$

Thus f maps onto b. This is true for all $b \in B$, so f maps onto B, i.e. f is an onto function.

(ii) By definition of f^{-1} we have

$$(f^{-1} \circ f)(a) = 1_A(a) = a \ \forall a \in A.$$

Assume

$$f(a_1) = f(a_2).$$

Apply f^{-1} to both sides. Then

$$f^{-1}(f(a_1)) = f^{-1}(f(a_2))$$

i.e. $(f^{-1} \circ f)(a_1) = (f^{-1} \circ f)(a_2)$
i.e. $1_A(a_1) = 1_A(a_2)$
hence $a_1 = a_2.$

Thus

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2.$$

Therefore f is 1–1.

So, if $f : A \to B$ has an inverse we can conclude that f is a bijection. In other words, only bijections have inverses.

Example 79

Define $f : \mathbb{N} \to \mathbb{Z}$ by the diagram

or, as a formula,

$$f(n) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \\ -\frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

This is a bijection and has inverse $g:\mathbb{Z}\rightarrow\mathbb{N}~$ given by

$$g(n) = \begin{cases} 2n+1 & \text{if } n \ge 0\\ -2n & \text{if } n < 0. \end{cases}$$

Check that $g \circ f = 1_{\mathbb{N}}$. This requires two cases. In the first *n* is odd when

$$g \circ f(n) = g(f(n))$$

= $g\left(\frac{n-1}{2}\right)$
= $2\left(\frac{n-1}{2}\right) + 1$ since $\frac{n-1}{2} \ge 0$
= n .

In the second case n is even when

$$g \circ f(n) = g(f(n))$$

= $g\left(-\frac{n}{2}\right)$
= $-2\left(-\frac{n}{2}\right)$ since $-\frac{n}{2} < 0$,
= n .

In all cases $g \circ f(n) = n$ and so $g \circ f = 1_{\mathbb{N}}$.

To check that $f \circ g = 1_{\mathbb{Z}}$ we again have two cases though this time they are $n \ge 0$ and n < 0. In the first case

$$f \circ g(n) = f(g(n))$$

= $f(2n+1)$, since $n \ge 0$,
= $\frac{(2n+1)-1}{2}$, since $2n+1$ is odd,
= n .

In the second case, when n < 0 we get

$$f \circ g(n) = f(g(n))$$

= $f(-2n)$, since $n < 0$,
= $-\frac{(-2n)}{2}$, since $-2n$ is even,
= n .

Thus $f \circ g(n) = n$ for all $n \in \mathbb{Z}$ and so $f \circ g = 1_{\mathbb{Z}}$.

Example 80 (c.f. Example 77(5))

The function

$$f : \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{2x-1}{3}$$

has inverse

$$g: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{3x+1}{2}.$$

Check:

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{2x-1}{3}\right) = \frac{3\left(\frac{2x-1}{3}\right)+1}{2}$$
$$= \frac{(2x-1)+1}{2} = x = 1_{\mathbb{R}}(x)$$

and

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{3x+1}{2}\right) = \frac{2\left(\frac{3x+1}{2}\right) - 1}{3}$$

= $\frac{(3x+1) - 1}{3} = x = 1_{\mathbb{R}}(x).$