6.2 Functions

Definition

Let A and B be two sets (not necessarily different). Then a function is a rule that assigns to every element of A one and only one element of B. We let f denote this rule, and write $f: A \rightarrow B$.

If $a \in A$ and our rule assigns $b \in B$ to this a, we write $f(a)=b$. We say f is a function from A to B, A is the domain of f and B the codomain, and if $f(a)=b$ then b is the image of a.

Note: A function depends on three things: the rule f, the domain A and codomain B. Change any of these and you have a different function.
Describing Functions
(a) Pictorial
e.g.

Note we can use pictures to show what we do not want to see in a function. So we never want to see:

(b) Relations

Example 74 The above (pictorial) example may be written as

$$
f=\{(1, b),(2, b),(3, a),(4, d)\} \subseteq A \times B
$$

So a function is a relation between sets. Yet $g=\{(1, b),(1, a),(3, b)\}$ is not a function because firstly: the image of 1 is not unique, and secondly: what are the images of 2 and 4 ?
So functions are a particular type of relation between sets.
(c) Formula

Example 75 Define $f: \mathbb{R} \rightarrow \mathbb{R}$, by $f(x)=2 x^{3}-1$ (or $x \mapsto 2 x^{3}-1$).
So $f(0)=-1, f(-1)=-3, f(1)=1, f(2)=15, \ldots$
Pictorially:

(d) Inductively (or recursively)

Example 76 Define $f: \mathbb{N} \rightarrow \mathbb{Q}$ by

$$
f(1)=\frac{1}{2}, \quad f(n+1)=3 f(n)+5 \quad \text { for all } n \geq 1
$$

So

$$
f(1)=\frac{1}{2}, f(2)=3 \times \frac{1}{2}+5=\frac{13}{2}, f(3)=3 \times \frac{13}{2}+5=\frac{49}{2}, \ldots
$$

It can be shown that $f(n)=3^{n}-(5 / 2)$ for all $n \geq 1$.

$6.31-1$ and Onto Functions

Definition

A function $f: A \rightarrow B$ is one-to-one (or injective) if different elements of A are mapped to different elements of B.

Pictorially, the definition of one-to-one means that we never want to see:

We can write out the definition using quantifiers because the definition tells us that we never want different elements to have the same image, that is

$$
\begin{aligned}
& \neg\left(\exists a_{1}, \exists a_{2},\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \wedge\left(a_{1} \neq a_{2}\right)\right)\right. \\
& \equiv \forall a_{1}, \neg\left(\exists a_{2},\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \wedge\left(a_{1} \neq a_{2}\right)\right)\right. \\
& \equiv \forall a_{1}, \forall a_{2}, \neg\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \wedge\left(a_{1} \neq a_{2}\right)\right) \\
& \equiv \forall a_{1}, \forall a_{2},\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow \neg\left(a_{1} \neq a_{2}\right)\right) \\
& \quad(\text { recalling } \neg(p \wedge q) \equiv p \rightarrow \neg q) \\
& \equiv \forall a_{1}, \forall a_{2},\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow\left(a_{1}=a_{2}\right)\right) .
\end{aligned}
$$

So, to check if a function is 1-1 we need show that the conditional statement

$$
\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow\left(a_{1}=a_{2}\right)
$$

is true for all elements a_{1} and a_{2} from A. If we use the method of proof C.P. it suffices to assume $f\left(a_{1}\right)=f\left(a_{2}\right)$ and try to deduce $a_{1}=a_{2}$.

Definition

The function $f: A \rightarrow B$ is onto (or surjective) if each elements of B is the image of some element of A, i.e.

$$
\forall b \in B, \exists a \in A: f(a)=b
$$

Example 77 (1)

is $1-1$ but not onto.
(2)

is $1-1$ and onto. So $f_{1}: A \rightarrow B$ is a different function from $f_{1}: A \rightarrow B^{\prime}$, even though the rule is the same.
(3)

is not $1-1$, because $3 \neq 4$ but $f_{2}(3)=f_{2}(4)$; yet the function is onto.
(4) The function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ is not $1-1$ and is not onto.

Proof of (4): We see that $-1 \neq 1$ but $f(-1)=1=f(1)$, so the function is not $1-1$.

Now, given -1 , there does not exist $y \in \mathbb{R}$ such that $f(y)=-1$, i.e. $y^{2}=-1$ has no solution (in \mathbb{R}), so the function is not onto.
(5) The function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{(2 x-1)}{3}$ is $1-1$ and onto.

Proof of (5): Assume $f(x)=f(y)$, so

$$
\begin{aligned}
& \frac{(2 x-1)}{3}=\frac{(2 y-1)}{3} \\
\times 3: & 2 x-1=2 y-1 \\
+1: & 2 x=2 y \\
\times \frac{1}{2}: & x=y .
\end{aligned}
$$

Thus $f(x)=f(y)$ implies $x=y$. Hence the function is $1-1$.
Now, given any $x \in \mathbb{R}$ we need to find y such that f maps y onto x, that is,: $f(y)=x$, i.e. $\frac{2 y-1}{3}=x$. Simply rearrange as

$$
\begin{aligned}
& \frac{2 y-1}{3}=x \\
\times 3: & 2 y-1=3 x \\
+1: & 2 y=3 x+1 \\
\times \frac{1}{2}: & y=\frac{3 x+1}{2} .
\end{aligned}
$$

So choose $y=\frac{3 x+1}{2}$. As this works for any x, the function is onto.

Definition

We say that $f: A \rightarrow B$ is a bijection (or a one-one correspondence) if it is both $1-1$ and onto.
So, by example $77(5)$ we see that $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{(2 x-1)}{3}$ is a bijection.

