6.2 Functions

Definition

Let A and B be two sets (not necessarily different). Then a *function* is a rule that assigns to **every** element of A one **and only one** element of B. We let f denote this rule, and write $f : A \to B$.

If $a \in A$ and our rule assigns $b \in B$ to this a, we write f(a) = b. We say f is a function from A to B, A is the *domain* of f and B the *codomain*, and if f(a) = b then b is the *image* of a.

Note: A function depends on three things: the rule f, the domain A and codomain B. Change **any** of these and you have a different function.

Describing Functions

(a) *Pictorial* e.g.

Note we can use pictures to show what we do **not** want to see in a function. So we never want to see:

(b) *Relations*

Example 74 The above (pictorial) example may be written as

$$f = \{(1, b), (2, b), (3, a), (4, d)\} \subseteq A \times B.$$

So a function is a relation between sets. Yet $g = \{(1, b), (1, a), (3, b)\}$ is not a function because firstly: the image of 1 is not unique, and secondly: what are the images of 2 and 4?

So functions are a *particular* type of relation between sets.

(c) Formula

Example 75 Define $f : \mathbb{R} \to \mathbb{R}$, by $f(x) = 2x^3 - 1$ (or $x \mapsto 2x^3 - 1$). So f(0) = -1, f(-1) = -3, f(1) = 1, f(2) = 15,

Pictorially:

(d) *Inductively* (or *recursively*)

Example 76 Define $f : \mathbb{N} \to \mathbb{Q}$ by

$$f(1) = \frac{1}{2}$$
, $f(n+1) = 3f(n) + 5$ for all $n \ge 1$.

So

$$f(1) = \frac{1}{2}, \ f(2) = 3 \times \frac{1}{2} + 5 = \frac{13}{2}, \ f(3) = 3 \times \frac{13}{2} + 5 = \frac{49}{2}, \dots$$

It can be shown that $f(n) = 3^n - (5/2)$ for all $n \ge 1$.

6.3 1–1 and Onto Functions

Definition

A function $f: A \to B$ is one-to-one (or injective) if different elements of A are mapped to different elements of B.

Pictorially, the definition of one-to-one means that we **never** want to see:

We can write out the definition using quantifiers because the definition tells us that we never want different elements to have the same image, that is

$$\neg(\exists a_1, \exists a_2, ((f(a_1) = f(a_2)) \land (a_1 \neq a_2)))$$

$$\equiv \forall a_1, \neg (\exists a_2, ((f(a_1) = f(a_2)) \land (a_1 \neq a_2)))$$

$$\equiv \forall a_1, \forall a_2, \neg((f(a_1) = f(a_2)) \land (a_1 \neq a_2)))$$

$$\equiv \forall a_1, \forall a_2, ((f(a_1) = f(a_2)) \rightarrow \neg(a_1 \neq a_2)))$$

(recalling $\neg(p \land q) \equiv p \rightarrow \neg q$)

$$\equiv \forall a_1, \forall a_2, ((f(a_1) = f(a_2)) \rightarrow (a_1 = a_2)).$$

So, to check if a function is 1-1 we need show that the conditional statement

$$(f(a_1) = f(a_2)) \to (a_1 = a_2)$$

is true for all elements a_1 and a_2 from A. If we use the method of proof C.P. it suffices to assume $f(a_1) = f(a_2)$ and try to deduce $a_1 = a_2$.

Definition

The function $f : A \to B$ is *onto* (or *surjective*) if each elements of B is the image of some element of A, i.e.

$$\forall b \in B, \ \exists a \in A : \ f(a) = b.$$

Example 77 (1)

is 1–1 but **not** onto. (2)

is 1–1 and onto. So $f_1 : A \to B$ is a different function from $f_1 : A \to B'$, even though the rule is the same. (3)

is **not** 1–1, because $3 \neq 4$ but $f_2(3) = f_2(4)$; yet the function is onto.

(4) The function $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ is not 1–1 and is not onto.

Proof of (4): We see that $-1 \neq 1$ but f(-1) = 1 = f(1), so the function is not 1–1.

Now, given -1, there does not exist $y \in \mathbb{R}$ such that f(y) = -1, i.e. $y^2 = -1$ has no solution (in \mathbb{R}), so the function is not onto. (5) The function $f : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{(2x-1)}{3}$ is 1–1 and onto. **Proof of (5):** Assume f(x) = f(y) so

Proof of (5): Assume
$$f(x) = f(y)$$
, so

$$\frac{(2x-1)}{3} = \frac{(2y-1)}{3}$$
×3: $2x - 1 = 2y - 1$
+1: $2x = 2y$
× $\frac{1}{2}$: $x = y$.

Thus f(x) = f(y) implies x = y. Hence the function is 1–1.

Now, given any $x \in \mathbb{R}$ we need to find y such that f maps y onto x, that is,: f(y) = x, i.e. $\frac{2y-1}{3} = x$. Simply rearrange as

$$\frac{2y-1}{3} = x \\ \times 3: \quad 2y - 1 = 3x \\ +1: \quad 2y = 3x + 1 \\ \times \frac{1}{2}: \quad y = \frac{3x+1}{2}.$$

So choose $y = \frac{3x+1}{2}$. As this works for any x, the function is onto.

Definition

We say that $f:A\to B$ is a bijection (or a $one-one\ correspondence)$ if it is both 1–1 and onto.

So, by example 77(5) we see that $f : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{(2x-1)}{3}$ is a bijection.