6 Relations and Functions

6.1 Relations

Definition

Given two sets A and B (not necessarily different) a relation from A to B is any subset $\mathcal{R} \subseteq A \times B$. If $(a, b) \in \mathcal{R}$ we write $a R b$ and say that a is related to b. If a is not related to b, i.e. $(a, b) \notin \mathcal{R}$, write $a N R b$.

If $A=B$, a relation on A is any subset $\mathcal{R} \subseteq A \times A$.

Example 66

Let $A=\{a, b, c, d\}$ and $B=\{x, y, z\}$.
(a) $\mathcal{R}_{1}=\{(a, x),(b, z),(d, y),(c, x)\}$ is a relation from A to B.
(b) $\mathcal{R}_{2}=\{(x, d),(y, c)\}$ is a relation from B to A.
(c) $\mathcal{R}_{3}=\{(x, x),(x, y),(x, z)\}$ is a relation on B.

Example 67

$\mathcal{R}=\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$ is a relation on \mathbb{R}.
We can show this on a graph.

Consider $A=B$. Given $\mathcal{R} \subseteq A \times A$ we can denote it by a directed graph or digraph which consists of a set of vertices (or nodes) corresponding to elements of A, and edges (or arcs) that connect vertices v and w if, and only if, $(v, w) \in \mathcal{R}$ with an arrow pointing from v to w.

Example 68

If $A=\{1,2,3,4\}$ and $\mathcal{R}=\{(1,1),(3,2),(2,3),(4,1),(3,3)\}$ this relation can be drawn as

Example 69

Starting with the digraph

we see that the relation on $\{a, b, c, d, e\}$ is

$$
\{(a, a),(a, b),(a, e),(b, d),(c, b),(d, d),(e, b)\}
$$

Special Properties

A relation on a set A may satisfy any of the following properties:
\mathcal{R} is reflexive: for all $x \in A,(x, x) \in \mathcal{R}$, i.e.

$$
\forall x:(x, x) \in \mathcal{R} .
$$

\mathcal{R} is symmetric: for all $x, y \in A$, if $(x, y) \in \mathcal{R}$ then $(y, x) \in \mathcal{R}$, i.e.

$$
\forall x, \forall y:((x, y) \in \mathcal{R}) \rightarrow((y, x) \in \mathcal{R})
$$

\mathcal{R} is transitive: for all $x, y, z \in A$, if $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(x, z) \in \mathcal{R}$, i.e.

$$
\forall x, \forall y, \forall z:(((x, y) \in \mathcal{R}) \wedge((y, z) \in \mathcal{R})) \rightarrow((x, z) \in \mathcal{R})
$$

For \mathcal{R} to be reflexive means that in the digraph there is a loop on every vertex.

For \mathcal{R} to be symmetric means that, in the digraph, on every path between different vertices there will be two arrows.

For \mathcal{R} to be transitive you have to look at every example in the digraph of a path linking three vertices using two line. Then you have to check that there is one line linking the end points (i.e. you have to check that if you can go the 'long way round' then you can go the 'direct' way. Note that in the definition of transitive the vertices x, y and z need not be different.

Example 70

Let $A=\{1,2,3\}$.
(a) Let $\mathcal{R}_{1}=\{(1,2),(2,1),(3,3)\}$.

This relation is not reflexive, (there is no loop on 1 , say) is symmetric, is not transitive $\left((1,2),(2,1) \in \mathcal{R}_{1}\right.$ but $\left.(1,1) \notin \mathcal{R}_{1}\right)$.
(b) Let $\mathcal{R}_{2}=\{(1,3),(3,1),(2,3),(3,2),(1,1),(2,2),(3,3)\}$.

This relation is reflexive, is symmetric, is not transitive. $((1,3),(3,2) \in$ \mathcal{R}_{2} but $\left.(1,2) \notin \mathcal{R}_{2}\right)$
(c) Let $\mathcal{R}_{3}=\{(1,2),(2,1),(3,1),(3,2),(1,1),(2,2),(3,3)\}$.

This relation is reflexive, is not symmetric $\left((3,2) \in \mathcal{R}_{3}\right.$ but $\left.(2,3) \notin \mathcal{R}_{3}\right)$, is transitive.

You have to be careful when checking transitivity. (d) Let $\mathcal{R}_{4}=\{(1,2),(2,1),(2,2)\}$.

This relation is reflexive, is symmetric, and is not transitive since $1 R 2$ but $2 R 1$ but $1 N R 1$.
(e) Let $\mathcal{R}_{5}=\{(1,1),(2,2),(3,3)\}$.

This relation is reflexive, is symmetric, is transitive.

Example 71

Define \mathcal{R} on \mathbb{N} by $a R b$ if, and only if, $a<b$.
Then R is transitive (e.g. $1<2$ and $2<3$ implies $1<3$) but R is not reflexive (e.g. $1 N R 1$ since $1 \nless 1$) and R is not symmetric (e.g. $2 R 3$ since $2<3$ but $3 N R 2$ since $3 \nless 2$).

Definition If $m, n \in \mathbb{Z}$ we say that m divides n if there exists $a \in \mathbb{Z}$ such that $n=m a$, and write $m \mid n$.

So for example 3 divides 6 since $6=3 \times 2$, and 3 divides -6 since $-6=3 \times(-2)$, and also 3 divides 0 since $0=0 \times 3$. Of course all integers divide 0 for the same reason: $0=0 \times m$ for any $m \in \mathbb{Z}$.

Example 72

Define \mathcal{R} on \mathbb{Z} by $a R b$ if 3 divides $a-b$.
So, for example, $1 R 1$ (since 3 divides 0), and similarly $1 R 4,1 R 7,1 R 10, \ldots$, while $1 N R 9$.
We show that R satisfies all three properties.
Given $x \in \mathbb{Z}$, then by above 3 divides $x-x=0$ so $x R x$, i.e. \mathcal{R} is reflexive.

Given $x, y \in \mathbb{Z}$, if $x R y$ then 3 divides $x-y$ so 3 divides $-(x-y)$ i.e. 3 divides $y-x$, so $y R x$; i.e. \mathcal{R} is symmetric.

Given $x, y, z \in \mathbb{Z}$, if $x R y$ and $y R z$ then 3 divides $x-y$ and $y-z$. By the definition this means we can find $a, b \in Z$ such that , $x-y=3 a$ and $y-z=3 b$. Adding these two equations together we get $(x-y)+(y-z)=3 a+3 b$, that is $x-z=3(a+b)$. Thus 3 divide. $x-z$ and so $x R z$, i.e. \mathcal{R} is transitive.

Definition

A relation that satisfies all three properties (reflexive, symmetric and transitive) is called an equivalence relation.

Example 73

is an equivalence relation.

