Section 6 Series in General

We now consider series in which some, and in fact possibly infinitely many, of the terms are negative. Given such a series $\sum_{r=1}^{\infty} a_{r}$ we might first think to examine $\sum_{r=1}^{\infty}\left|a_{r}\right|$, a series of non-negative terms to which we could apply the results of section 5 .

The convergence of the two series are related by
Theorem 6.1 Let $\sum_{r=1}^{\infty} a_{r}$ be a series. If $\sum_{r=1}^{\infty}\left|a_{r}\right|$ is convergent then $\sum_{r=1}^{\infty} a_{r}$ is convergent.
Proof
Assume $\sum_{r=1}^{\infty}\left|a_{r}\right|$ is convergent.
From the definition of modulus we have that

$$
-\left|a_{r}\right| \leq a_{r} \leq\left|a_{r}\right| \text { for all } r \geq 1,
$$

and so

$$
\begin{equation*}
0 \leq a_{r}+\left|a_{r}\right| \leq 2\left|a_{r}\right| \text { for all } r \geq 1 \tag{12}
\end{equation*}
$$

By Theorem 4.4 we know that we can multiply a convergent series term-byterm by a constant and still have a convergent series, and so in particular $\sum_{r=1}^{\infty} 2\left|a_{r}\right|$ is convergent. Then by the First Comparison Test and (12) we deduce that $\sum_{r=1}^{\infty}\left(a_{r}+\left|a_{r}\right|\right)$ is convergent. Finally we use Theorem 4.4 again, this time it tells us we can add or subtract convergent series to get new convergent series. In particular we can deduce that

$$
\sum_{r=1}^{\infty} a_{r}=\sum_{r=1}^{\infty}\left(\left(a_{r}+\left|a_{r}\right|\right)-\left|a_{r}\right|\right)
$$

is convergent.
Definition A series $\sum_{r=1}^{\infty} a_{r}$ is called absolutely convergent if $\sum_{r=1}^{\infty}\left|a_{r}\right|$ is convergent.
Note We can write Theorem 6.1 as:

$$
\text { absolutely convergent } \Rightarrow \text { convergent. }
$$

For applications see Question 2, Sheet 6.
In this course we do not come across many series that are not absolutely convergent.
Definition A series is said to be alternating if its terms are alternatively positive and negative.

Example

$$
\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
$$

is an alternating series.
Theorem 6.2 (Alternating Series Test)
Let $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ be a series with $a_{r}>0$ for all r. Suppose that the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is decreasing with limit 0 .

Then $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}$ is convergent.
Proof The proof is not examinable so I have relegated it to the appendix.

Example

Show that $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r}$ is convergent.

Solution

The sequence $a_{r}=\frac{1}{r}, r \geq 1$, is obviously decreasing. It is equally obvious that $\lim _{r \rightarrow \infty} a_{r}=0$.

Hence, by Theorem 6.2, $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r}$ converges.
This example shows that the converse of Theorem 6.1 is FALSE. For we now have an example of a series, namely, $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r}$ which is convergent but for which

$$
\sum_{r=1}^{\infty}\left|(-1)^{r+1} \frac{1}{r}\right|=\sum_{r=1}^{\infty} \frac{1}{r}
$$

is divergent, being the Harmonic Series.
Definition A series is said to be conditionally convergent if $\sum_{r=1}^{\infty} a_{r}$ converges yet $\sum_{r=1}^{\infty}\left|a_{r}\right|$ diverges.

So $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r}$ is a conditionally convergent series.
For more examples see Question 1 Sheet 6

Remember

> absolutely convergent \Rightarrow convergent, but
> convergent \nRightarrow absolutely convergent.

Tests for Convergence

Unlike Theorems 5.2 and 5.3 the following convergence tests do not require the use of a second series.

Theorem 6.3 (D'Alembert's Ratio Test)
Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of non-zero real numbers and suppose the sequence $\left\{\left|\frac{a_{n+1}}{a_{n}}\right|\right\}_{n \in \mathbb{N}}$ is convergent with limit λ.
(i) If $\lambda<1$, then $\sum_{r=1}^{\infty} a_{r}$ converges absolutely.
(ii) If $\lambda>1$, then $\sum_{r=1}^{\infty} a_{r}$ diverges.
(If $\lambda=1$, the test tells us nothing about the series and we need to investigate further.)

Proof

The assumption that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lambda
$$

means

$$
\forall \varepsilon>0 \exists N \in \mathbb{N}: \forall n \geq N,\left|\left|\frac{a_{n+1}}{a_{n}}\right|-\lambda\right|<\varepsilon,
$$

i.e.

$$
\begin{equation*}
\forall \varepsilon>0 \exists N \in \mathbb{N}: \forall n \geq N, \lambda-\varepsilon<\left|\frac{a_{n+1}}{a_{n}}\right|<\lambda+\varepsilon, \tag{13}
\end{equation*}
$$

(i) Assume $\lambda<1$. Choose $\varepsilon=(1-\lambda) / 2$ (which is >0 since $\lambda<1$) so that $\lambda+\varepsilon=(1+\lambda) / 2<1$. Note that $\lambda+\varepsilon>0$ since $\lambda \geq 0$.

Then from the upper bound in (13) we can find an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|a_{n+1}\right|<(\lambda+\varepsilon)\left|a_{n}\right| \tag{14}
\end{equation*}
$$

for all $n \geq N$. Thus

$$
\begin{align*}
& \left|a_{N+1}\right|<(\lambda+\varepsilon)\left|a_{N}\right|, \tag{15}\\
& \left|a_{N+2}\right|<(\lambda+\varepsilon)\left|a_{N+1}\right|<(\lambda+\varepsilon)^{2}\left|a_{N}\right|, \\
& \left|a_{N+3}\right|<(\lambda+\varepsilon)\left|a_{N+2}\right|<(\lambda+\varepsilon)^{3}\left|a_{N}\right|,
\end{align*}
$$

In general we prove

$$
0<\left|a_{N+r}\right|<(\lambda+\varepsilon)^{r}\left|a_{N}\right|
$$

for all $r \geq 1$ by induction. It holds for $r=1$ by (15). Assume true for $r=k$. Then consider

$$
\begin{aligned}
\left|a_{N+k+1}\right| & <(\lambda+\varepsilon)\left|a_{N+k}\right| \quad \text { by (14) } \\
& <(\lambda+\varepsilon)(\lambda+\varepsilon)^{k}\left|a_{N}\right| \quad \text { by the inductive assumption } \\
& =(\lambda+\varepsilon)^{k+1}\left|a_{N}\right| .
\end{aligned}
$$

So the result is true for $r=k+1$. Hence result is true for all $r \geq 1$.
Since $|\lambda+\varepsilon|<1$ the geometric series $\sum_{r=1}^{\infty}(\lambda+\varepsilon)^{r}\left|a_{N}\right|$ is convergent. Therefore, by the First Comparison Test, Theorem 5.2, $\sum_{r=1}^{\infty}\left|a_{N+r}\right|=\sum_{r=N+1}^{\infty}\left|a_{r}\right|$ is convergent and so $\sum_{r=1}^{\infty}\left|a_{r}\right|$ is convergent by Theorem 4.2. Thus $\sum_{r=1}^{\infty} a_{r}$ is absolutely convergent.
(ii) Assume $\lambda>1$. Choose $\varepsilon=(\lambda-1) / 2$ (which is >0 since $\lambda>1$) so that $\lambda-\varepsilon=(1+\lambda) / 2>1$.

Then from the lower bound in (13) we can find an $N \in \mathbb{N}$ such that

$$
\left|a_{n+1}\right|>(\lambda-\varepsilon)\left|a_{n}\right|>\left|a_{n}\right|
$$

for all $n \geq N$. Thus

$$
\left|a_{N}\right|<\left|a_{N+1}\right|<\left|a_{N+2}\right|<\left|a_{N+3}\right|<\ldots .
$$

In particular this means that the terms of the series, a_{r}, do not converge to 0 . Hence, by Corollary 4.6, the series diverges.

For applications, see Question 9, Sheet 6
Theorem 6.4 (Cauchy's n-th root test.)
Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence and suppose that $\left\{\left|a_{n}\right|^{1 / n}\right\}_{n \in \mathbb{N}}$ converges with limit λ.
(i) If $\lambda<1$, then $\sum_{r=1}^{\infty} a_{r}$ converges absolutely.
(ii) If $\lambda>1$, then $\sum_{r=1}^{\infty} a_{r}$ diverges.
(If $\lambda=1$, this test tells us nothing about the series and we need to investigate further.)
Proof
Let $\varepsilon>0$ be given. The assumption that $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lambda$ means there exists $N \in \mathbb{N}$ such that

$$
\begin{array}{ll}
& \left|\left|a_{n}\right|^{1 / n}-\lambda\right|<\varepsilon, \\
\text { i.e } & \lambda-\varepsilon<\left|a_{n}\right|^{1 / n}<\lambda+\varepsilon, \tag{16}\\
\text { or } & (\lambda-\varepsilon)^{n}<\left|a_{n}\right|<(\lambda+\varepsilon)^{n},
\end{array}
$$

for all $n>N$.
(i) Assume $\lambda<1$. Choose $\varepsilon=(1-\lambda) / 2$ (which is >0 since $\lambda<1$) so that $\lambda+\varepsilon=(1+\lambda) / 2<1$. Note that $\lambda+\varepsilon>0$ since $\lambda \geq 0$.

By the upper bound in (16) there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}\right|<(\lambda+\varepsilon)^{n}$ for all $n \geq N_{1}$.

Since $\lambda+\varepsilon<1$ the geometric series $\sum_{r=N_{1}}^{\infty}(\lambda+\varepsilon)^{n}$ converges. So, by the First Comparison Test, $\sum_{r=N_{1}}^{\infty}\left|a_{r}\right|$ converges.

Therefore, $\sum_{r=1}^{\infty}\left|a_{r}\right|$ converges as required.
(ii) Assume $\lambda>1$. Choose $\varepsilon=(\lambda-1) / 2$ (which is >0 since $\lambda>1$) so that $\lambda-\varepsilon=(1+\lambda) / 2>1$.

By the lower bound in (16) there exists $N_{2} \in \mathbb{N}$ such that $\left|a_{n}\right|>(\lambda+\varepsilon)^{n}>$ $1^{n}=1$ for all $n \geq N_{2}$. This means that the sequence $\left\{\left|a_{n}\right|\right\}_{n \geq 1}$ does not converge to 0 , which in turn means that $\left\{a_{n}\right\}_{n \geq 1}$ does not converge.

Hence, by Corollary 4.5, $\sum_{r=1}^{\infty} a_{r}$ diverges.
For applications see Question 18, Sheet 6

Power Series

Definition Let x be a real number and let $\left\{a_{r}\right\}_{r \geq 0}$ be a sequence. The series

$$
\sum_{r=0}^{\infty} a_{r} x^{r}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

is called a power series in x. Note that the series starts at 0 and not 1 .
So the geometric series of Section 4 are a particular type of power series, namely $a_{i}=\lambda$ for all $i \geq 1$.

Let $\mathcal{S} \subseteq \mathbb{R}$ be the set of values of x for which the power series is convergent. (Later we shall see that \mathcal{S} is a special kind of set.)
Example Find those x for which $\sum_{r=0}^{\infty} \frac{x^{r}}{r!}$ is convergent.

Solution

Let $a_{n}=\frac{x^{n}}{n!}$. Then

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x|^{n+1}}{(n+1)!} \frac{n!}{|x|^{n}}=\frac{|x|}{n+1},
$$

so

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=0 \quad \text { for all } x
$$

Thus, in the notation of the ratio test $\lambda=0$ for all x and so $\sum_{r=0}^{\infty}\left|\frac{x^{r}}{r!}\right|$ converges for all x. Then, by Theorem 6.1, we have that $\sum_{r=0}^{\infty} \frac{x^{r}}{r!}$ converges for all $x \in \mathbb{R}$.

We can define a function $\exp : \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\exp (x)=\sum_{r=0}^{\infty} \frac{x^{r}}{r!}
$$

By the above example it is seen that this function is well-defined for all $x \in \mathbb{R}$.
For a general power series $\sum_{r=0}^{\infty} a_{r} x^{r}$ we can define a function $f: \mathcal{S} \rightarrow \mathbb{R}$ by $f(x)=\sum_{r=0}^{\infty} a_{r} x^{r}$.
Example Show that

$$
\sum_{r=0}^{\infty}(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!} \quad \text { and } \quad \sum_{r=0}^{\infty}(-1)^{r} \frac{x^{2 r}}{(2 r)!}
$$

converge for all $x \in \mathbb{R}$.

Solution

Use exactly the same method as in the above example, namely first use the Ratio Test to show that both

$$
\sum_{r=0}^{\infty}\left|\frac{x^{2 r+1}}{(2 r+1)!}\right| \quad \text { and } \quad \sum_{r=0}^{\infty}\left|\frac{x^{2 r}}{(2 r)!}\right|
$$

converge for all $x \in \mathbb{R}$. Then apply Theorem 6.2 to get the stated result.
These series define the functions $\sin : \mathbb{R} \rightarrow \mathbb{R}$ and $\cos : \mathbb{R} \rightarrow \mathbb{R}$ respectively.

In the study of \mathcal{S} we will make use of the following fundamental result.

Lemma 6.5 Let $\sum_{r=0}^{\infty} a_{r} x^{r}$ be a power series.
(i) If the series converges for $x_{0} \in \mathbb{R}$ then it converges absolutely for all x satisfying $-\left|x_{0}\right|<x<\left|x_{0}\right|$.
(ii) If the series diverges for $x_{1} \in \mathbb{R}$ then it diverges for all x satisfying either $x<-\left|x_{1}\right|$ or $x>\left|x_{1}\right|$.

Proof (i) If $x_{0}=0$ there is nothing to prove since there are no x satisfying $-0<x<0$. So we can assume that $x_{0} \neq 0$. By Theorem 4.5, the fact that the series $\sum_{r=0}^{\infty} a_{r} x_{0}^{r}$ converges implies that $\lim _{n \rightarrow \infty} a_{n} x_{0}^{n}=0$.

By Theorem 3.2 this means that $\left\{a_{n} x_{0}^{n}\right\}_{n \in \mathbb{N}}$ is bounded, i.e. there exists $M \geq 0$ such that $\left|a_{n} x_{0}^{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Let x : $-\left|x_{0}\right|<x<\left|x_{0}\right|$ be given. (The strict inequality is important.)
Let $t=\frac{|x|}{\left|x_{0}\right|}$. Then $0 \leq t<1$ and

$$
0 \leq\left|a_{n} x^{n}\right|=\left|a_{n} x_{0}^{n}\right| t^{n} \leq M t^{n}
$$

for all $n \in \mathbb{N}$. Now apply the First Comparison Test. Since $0 \leq t<1$ the geometric series $\sum_{r=0}^{\infty} M t^{r}$ converges and so $\sum_{r=0}^{\infty}\left|a_{r} x^{r}\right|$ converges, i.e. $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges absolutely. This is true for any $x:-\left|x_{0}\right|<x<\left|x_{0}\right|$.
(ii) This is simply (i) rewritten (if (ii) did not hold then we would get a contradiction with (i)).

Terminology Let $R>0$. We call $(-R, R),(-R, R],[-R, R)$ and $[-R, R]$, intervals about 0 with radius R. For completeness we call $\{0\}$ the interval with radius 0 and $\mathbb{R}=(-\infty, \infty)$ the interval with infinite radius. The defining features of these intervals are that they are sets such that if x satisfies $|x|<R$ then x is in the set while if $|x|>R$ then x is not in the set.

Theorem 6.6 Let $\sum_{r=0}^{\infty} a_{r} x^{r}$ be a power series. Then the set of values of $x \in \mathbb{R}$ for which the series converges (i.e. the set \mathcal{S}) is an interval about 0 .

Proof

There are three distinct cases:
(i) $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges only for $x=0$,
(ii) $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges for all $x \in \mathbb{R}$,
(iii) $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges for some $x_{0} \neq 0$ and diverges for some $x_{1} \neq 0$.

If case (i) holds the result follows with radius $R=0$, and if case (ii) holds then the result follows with R infinite.

Suppose case (iii) holds. Recall that

$$
\mathcal{S}=\left\{x \in \mathbb{R}: \sum_{r=0}^{\infty} a_{r} x^{r} \text { converges }\right\} .
$$

By assumption $\mathcal{S} \neq \mathbb{R}$. We also have that $\sum_{r=0}^{\infty} a_{r} x_{1}^{r}$ diverges. Then by Lemma 6.5(ii) $\sum_{r=0}^{\infty} a_{r} x^{r}$ diverges for all x with $|x|>\left|x_{1}\right|$. Hence if $x \in \mathcal{S}$ we must have $|x| \leq\left|x_{1}\right|$, i.e. $-\left|x_{1}\right| \leq x \leq\left|x_{1}\right|$. Thus \mathcal{S} is a bounded set, and in particular, bounded above. Trivially $0 \in \mathcal{S}$ and so $\mathcal{S} \neq \emptyset$, i.e. non-empty. Thus, since \mathbb{R} is complete, \mathcal{S} has a least upper bound. Set $R=l u b \mathcal{S}$.

We have to show that \mathcal{S} has the properties of being an interval about 0 with radius R, namely that if x satisfies $|x|<R$ then $x \in \mathcal{S}$ while if $|x|>R$ then $x \notin \mathcal{S}$.

Let x satisfy $|x|<R$. This means that $|x|$ is not an upper bound for \mathcal{S} so we can find $z \in \mathcal{S}$ such that $|x|<z \leq R$. (The difference between z and $|x|$ is the lack of modulus!) Since $z \in \mathcal{S}$ we have that $\sum_{r=0}^{\infty} a_{r} z^{r}$ converges. But then, since $|x|<z$ implies $-|z|<|x|<|z|$, we can apply Lemma 6.5(i) to deduce that $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges (absolutely), i.e. $x \in \mathcal{S}$.

So we have shown: if $|x|<R$ then $x \in \mathcal{S}$.
Let x satisfy $|x|>R$. For a proof by contradiction assume that $x \in \mathcal{S}$, i.e. $\sum_{r=0}^{\infty} a_{r} x^{r}$ converges. Choose a real number z such that $|x|>z>R$. Note that $|x|>z>R \geq 0$ implies $-|x|<z<|x|$. So, by Lemma 6.5(i), the facts $x \in \mathcal{S}$ and $-|x|<z z<|x|$ mean that $\sum_{r=0}^{\infty} a_{r} z^{r}$ converges, i.e. $z \in \mathcal{S}$. Yet this means that $z \leq l u b \mathcal{S}=R$, which contradicts $z>R$. So the assumptions if false, hence $x \notin \mathcal{S}$.

So we have shown: if $|x|>R$ then $x \notin \mathcal{S}$.
Hence \mathcal{S} is an interval about 0 .
Definition The interval of radius R is called the interval of convergence and R is called the radius of convergence.

Remarks (i) The proof of Theorem 6.6 shows that for x satisfying $|x|<R$ the power series converges absolutely.
(ii) To determine R we can often use the Ratio Test or the $n^{\text {th }}$-root test. In the example defining exp above we used the Ratio test as we do again in the following.

Example Determine the radius of convergence of $\sum_{r=1}^{\infty} \frac{x^{r}}{r}$.

Solution

Let $a_{n}=\frac{x^{n}}{n}$. Then

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x|^{n+1}}{(n+1)} \frac{n}{|x|^{n}}=\left(1-\frac{1}{n+1}\right)|x|,
$$

in which case

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=|x| \text { for all } x .
$$

So, in the notation of Theorem 6.3, $\lambda=|x|$. Thus, if $|x|<1$ when $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1$ then by the Ratio Test, the series converges (absolutely).

If $|x|>1$, in which case $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>1$, then by the Ratio Test, the series diverges.

Therefore, the radius of convergence is 1 .
A further application of the ratio test is
Example Determine the radius of convergence of $\sum_{r=0}^{\infty}\left(3^{r}+7^{r}\right) x^{r}$.

Solution

Rough Work
For very large r the coefficient $\left(3^{r}+7^{r}\right)$ is essentially the same as 7^{r} and the series "looks like" $\sum(7 x)^{r}$. This is a geometric series which we know converges if $|7 x|<1$, i.e. $|x|<\frac{1}{7}$. So we might expect the radius of convergence to be $\frac{1}{7}$.

End of rough work.
Let $a_{n}=\left(3^{n}+7^{n}\right) x^{n}$. Then

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\left|\frac{\left(3^{n+1}+7^{n+1}\right) x^{n+1}}{\left(3^{n}+7^{n}\right) x^{n}}\right|=\left(\frac{3\left(\frac{3}{7}\right)^{n}+7}{\left(\frac{3}{7}\right)^{n}+1}\right)|x|
$$

so

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=7|x| \quad \text { for all } x .
$$

So, if $|x|<\frac{1}{7}$ then $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1$ and thus, by the Ratio Test, the series converges.

If $|x|>\frac{1}{7}$ then $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}>1$ and thus, by the Ratio Test, the series diverges.

Therefore, the radius of convergence is $\frac{1}{7}$.

An application of the $n^{\text {th }}$-root test is given in
Example Find the radius of convergence for $\sum_{r=1}^{\infty}\left(3+\frac{7}{r}\right)^{r} x^{r}$.

Solution

Here $a_{n}=\left(3+\frac{7}{n}\right)^{n} x^{n}$ so $\left|a_{n}\right|^{1 / n}=\left(3+\frac{7}{n}\right)|x|$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=3|x|$. Hence, in the notation of Theorem 6.5, $\lambda=3|x|$ and so, from that result, the series converges absolutely if $3|x|<1$, i.e. $|x|<\frac{1}{3}$, and diverges if $3|x|>1$, that is, $|x|>\frac{1}{3}$. Thus the radius of convergence is $\frac{1}{3}$.
Note We can use the ratio and $n^{\text {th }}$-root tests to find R but they wont tell us everything about the interval of convergence. In particular they will not tell us what happens at the end points $x=R$ and $x=-R$. You will have to examine these two cases separately.
*Example Determine the intervals of convergence of $\sum_{r=1}^{\infty} \frac{x^{r}}{r}$ and $\sum_{r=0}^{\infty}\left(3^{r}+\right.$ $\left.7^{r}\right) x^{r}$.

Solution For $\sum_{r=1}^{\infty} \frac{x^{r}}{r}$ we have to check $x= \pm 1$. When $x=1$ we get the Harmonic Series which diverges. When $x=-1$ we get a series that converges by the alternating series test. Hence the interval of convergence is $[-1,1)$.

For $\sum_{r=0}^{\infty}\left(3^{r}+7^{r}\right) x^{r}$ we have to check $x= \pm 1 / 7$. For both of these values we see that

$$
\left|\left(3^{r}+7^{r}\right) x^{r}\right|=\left|\frac{\left(3^{r}+7^{r}\right)}{7^{r}}\right|>1
$$

for all $r \geq 1$. In particular the terms of the series do not tend to zero and so the series cannot converge. Hence, the interval of convergence is $\left(-\frac{1}{7}, \frac{1}{7}\right)$.

Finally we can state a form of the ratio and $n^{\text {th }}$-root tests that are appropriate for power series. To stop confusion with the notation of Theorem 5.7 write our power series as $\sum_{r=0}^{\infty} b_{r} x^{r}$.

Theorem 6.7 Assume either, the sequence $\left\{\left|\frac{b_{n+1}}{b_{n}}\right|\right\}_{n \in \mathbb{N}}$ converges with limit λ or the sequence $\left\{\left|b_{n}\right|^{1 / n}\right\}_{n \in \mathbb{N}}$ converges with limit λ.
(i) If $\lambda \neq 0$ and $|x|<\frac{1}{\lambda}$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ converges absolutely.
(ii) If $\lambda \neq 0$ and $|x|>\frac{1}{\lambda}$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ diverges.
(iii) If $\lambda=0$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ converges absolutely for all x.

In particular, if $\lambda \neq 0$ the radius of convergence is $\frac{1}{\lambda}$ while if $\lambda=0$ the radius is infinite.
Proof (Left to student but see the appendix.)

Appendix

Theorem 6.2 (Alternating Series Test)
Let $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ be a series with $a_{r}>0$ for all r. Suppose that the sequence $\left\{a_{n}\right\}$ is decreasing with limit 0 .

Then $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}$ is convergent.
Proof Not given in course.
Rough work

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}-a_{2} \leq a_{1}=s_{1} \\
& s_{3}=a_{1}-a_{2}+a_{3} \geq a_{1}-a_{2}=s_{2}
\end{aligned}
$$

So the partial sums satisfy $s_{1} \geq s_{2}, s_{2} \leq s_{3}, s_{3} \geq s_{4}, s_{4} \leq s_{5}, \ldots$. That is, the sequence of partial sums "jumps" down from s_{1}, up from s_{2}, down from s_{3}, up from s_{4}, etc. But, since $\lim _{n \rightarrow \infty} a_{n}=0$ these jumps get smaller and smaller, and the sequence will converge, to a value less than all the s_{n} with n odd but larger than all the s_{n} with n even. A method of proof would be a sandwich type argument where we show that

$$
\lim _{\substack{n \rightarrow \infty \\ n \text { odd }}} s_{n}=\lim _{\substack{n \rightarrow \infty \\ n \text { even }}} s_{n}
$$

End of rough work
Let s_{n} be the $n^{\text {th }}$ partial sum of $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}$. Then, for all $m \in \mathbb{N}$ we have for the partial sums of odd length

$$
\begin{aligned}
s_{2 m+1}-s_{2 m-1} & =(-1)^{2 m+2} a_{2 m+1}+(-1)^{2 m+1} a_{2 m} \\
& =a_{2 m+1}-a_{2 m} \\
& \leq 0, \quad \text { since }\left\{a_{n}\right\} \text { is decreasing. }
\end{aligned}
$$

Hence $s_{2 m+1} \leq s_{2 m-1}$ for all $m \in \mathbb{N}$, i.e. $s_{1} \geq s_{3} \geq s_{5} \geq \ldots$, a decreasing sequence.
Also, on bracketing,

$$
\begin{aligned}
s_{2 m+1} & =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right)+\ldots+\left(a_{2 m-1}-a_{2 m}\right)+a_{2 m+1} \\
& \geq 0 \quad \text { since } a_{2 n-1}-a_{2 n} \geq 0 \text { for all } n \text { and } a_{2 m+1} \geq 0
\end{aligned}
$$

Hence $s_{1} \geq s_{3} \geq s_{5} \geq \ldots$ is a decreasing sequence bounded below by 0 and so, by Theorem 3.5 , it converges to a limit α, say.

Similarly, for the partial sums of even length,

$$
\begin{aligned}
s_{2 m+2}-s_{2 m} & =(-1)^{2 m+3} a_{2 m+2}+(-1)^{2 m+2} a_{2 m+1} \\
& =-a_{2 m+2}+a_{2 m+1} \\
& \geq 0, \quad \text { since }\left\{a_{n}\right\} \text { is decreasing. }
\end{aligned}
$$

Also, on bracketing in a different manner to above,

$$
\begin{aligned}
s_{2 m} & =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\left(a_{6}-a_{7}\right)-\ldots-\left(a_{2 m-2}-a_{2 m-1}\right)-a_{2 m} \\
& \leq a_{1}, \quad \text { since } a_{2 n-1}-a_{2 n} \geq 0 \text { for all } n \text { and } a_{2 m} \geq 0 .
\end{aligned}
$$

Hence $s_{2} \leq s_{4} \leq s_{6} \leq \ldots$ is a increasing sequence bounded above by a_{1}, so by Theorem 3.4 it converges with limit β, say.

We next show that $\alpha=\beta$ by examining

$$
\begin{aligned}
|\beta-\alpha| & =\left|\beta-s_{2 m}+s_{2 m}-s_{2 m+1}+s_{2 m+1}-\alpha\right| \\
& \leq\left|\beta-s_{2 m}\right|+\left|s_{2 m}-s_{2 m+1}\right|+\left|s_{2 m+1}-\alpha\right| \\
& =\left|\beta-s_{2 m}\right|+\left|a_{2 m+1}\right|+\left|s_{2 m+1}-\alpha\right|
\end{aligned}
$$

Let $\varepsilon>0$ be given.
Then $\lim _{m \rightarrow \infty} s_{2 m}=\beta$ implies that there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\beta-s_{2 m}\right|<\frac{\varepsilon}{3} \text { for all } m \geq N_{1} \text {. } \tag{16}
\end{equation*}
$$

Similarly, $\lim _{n \rightarrow \infty} a_{n}=0$ implies that there exists $N_{2} \in \mathbb{N}$ such that

$$
\left|a_{n}\right|<\frac{\varepsilon}{3} \text { for all } n \geq N_{2} .
$$

Finally, $\lim _{m \rightarrow \infty} s_{2 m+1}=\alpha$ means that there exists $N_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|s_{2 m+1}-\alpha\right|<\frac{\varepsilon}{3} \text { for all } m \geq N_{3} . \tag{17}
\end{equation*}
$$

Choose any $m_{0}>N=\max \left(N_{1}, N_{2}, N_{3}\right)$. Then

$$
|\beta-\alpha| \leq\left|\beta-s_{2 m_{0}}\right|+\left|a_{2 m_{0}+1}\right|+\left|s_{2 m_{0}+1}-\alpha\right|<3 \frac{\varepsilon}{3}=\varepsilon .
$$

Since this is true for all $\varepsilon>0$ we must have $|\beta-\alpha|=0$, that is, $\alpha=\beta$. Call this common value ℓ.

So finally, given $n \geq N$, if n is even we have from (16) that $\left|s_{n}-\ell\right|<\frac{\varepsilon}{3}<\varepsilon$, while if n odd we have from (17) that, $\left|\ell-s_{n}\right|<\frac{\varepsilon}{3}<\varepsilon$. Thus in all cases $\left|s_{n}-\ell\right|<\varepsilon$ and so $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ converges.

Theorem 6.7 Assume either, the sequence $\left\{\left|\frac{b_{n+1}}{b_{n}}\right|\right\}$ converges with limit λ or the sequence $\left\{\left|b_{n}\right|^{1 / n}\right\}$ converges with limit λ.
(i) If $\lambda \neq 0$ and $|x|<\frac{1}{\lambda}$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ converges absolutely.
(ii) If $\lambda \neq 0$ and $|x|>\frac{1}{\lambda}$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ diverges.
(iii) If $\lambda=0$, then $\sum_{r=0}^{\infty} b_{r} x^{r}$ converges absolutely for all x.

In particular, if $\lambda \neq 0$ the radius of convergence is $\frac{1}{\lambda}$ while if $\lambda=0$ the radius is infinite.

Proof (Left to student.)
Assume that $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=\lambda$, in which case, $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1} x^{n+1}}{b_{n} x^{n}}\right|=\lambda|x|$. So if either $\lambda=0$ or $\lambda \neq 0$ and $|x|<\frac{1}{\lambda}$ then $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1} x^{n+1}}{b_{n} x^{n}}\right|<1$ and it follows from Theorem 6.3 that the power series converges absolutely. Otherwise, if $\lambda \neq 0$ and $|x|>\frac{1}{\lambda}$ then $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1} x^{n+1}}{b_{n} x^{n}}\right|<1$ and by Theorem 6.3 the series diverges.

Alternatively, assume that $\lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}=\lambda$, in which case, $\lim _{n \rightarrow \infty}\left|b_{n} x^{n}\right|^{1 / n}=$ $\lambda|x|$. So if either $\lambda=0$ or $\lambda \neq 0$ and $|x|<\frac{1}{\lambda}$ then $\lim _{n \rightarrow \infty}\left|b_{n} x^{n}\right|^{1 / n}<1$ and it follows from Theorem 6.4 that the power series converges absolutely. Otherwise, if $\lambda \neq 0$ and $|x|>\frac{1}{\lambda}$ then $\lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}>1$ and by Theorem 6.4 the series diverges.

