
Section 6 Series in General
We now consider series in which some, and in fact possibly infinitely

many, of the terms are negative. Given such a series
∑∞

r=1 ar we might first
think to examine

∑∞
r=1 |ar|, a series of non-negative terms to which we could

apply the results of section 5.
The convergence of the two series are related by

Theorem 6.1 Let
∑∞

r=1 ar be a series. If
∑∞

r=1 |ar| is convergent then∑∞
r=1 ar is convergent.

Proof
Assume

∑∞
r=1 |ar| is convergent.

From the definition of modulus we have that

−|ar| ≤ ar ≤ |ar| for all r ≥ 1,

and so

0 ≤ ar + |ar| ≤ 2|ar| for all r ≥ 1. (12)

By Theorem 4.4 we know that we can multiply a convergent series term-by-
term by a constant and still have a convergent series, and so in particular∑∞

r=1 2|ar| is convergent. Then by the First Comparison Test and (12) we de-
duce that

∑∞
r=1 (ar + |ar|) is convergent. Finally we use Theorem 4.4 again,

this time it tells us we can add or subtract convergent series to get new
convergent series. In particular we can deduce that

∞∑
r=1

ar =
∞∑

r=1

((ar + |ar|)− |ar|)

is convergent. �

Definition A series
∑∞

r=1 ar is called absolutely convergent if
∑∞

r=1 |ar|
is convergent.

Note We can write Theorem 6.1 as:

absolutely convergent ⇒ convergent.

For applications see Question 2, Sheet 6.

In this course we do not come across many series that are not absolutely
convergent.

Definition A series is said to be alternating if its terms are alternatively
positive and negative.
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Example

∞∑
r=1

(−1)r+1 1

r
= 1− 1

2
+

1

3
− 1

4
+ ...

is an alternating series.

Theorem 6.2 (Alternating Series Test)

Let
∑∞

r=1(−1)r+1ar = a1 − a2 + a3 − a4 + ... be a series with ar > 0 for

all r. Suppose that the sequence {an}n∈N is decreasing with limit 0.

Then
∑∞

r=1(−1)r+1ar is convergent.

Proof The proof is not examinable so I have relegated it to the appendix.

Example

Show that
∞∑

r=1

(−1)r+1 1

r
is convergent.

Solution

The sequence ar =
1

r
, r ≥ 1, is obviously decreasing. It is equally obvious

that limr→∞ ar = 0.

Hence, by Theorem 6.2,
∑∞

r=1(−1)r+1 1

r
converges. �

This example shows that the converse of Theorem 6.1 is FALSE. For we
now have an example of a series, namely,

∑∞
r=1(−1)r+1 1

r
which is convergent

but for which

∞∑
r=1

∣∣∣∣(−1)r+1 1

r

∣∣∣∣ =
∞∑

r=1

1

r

is divergent, being the Harmonic Series.

Definition A series is said to be conditionally convergent if
∑∞

r=1 ar

converges yet
∑∞

r=1 |ar| diverges.

So
∑∞

r=1(−1)r+1 1

r
is a conditionally convergent series.

For more examples see Question 1 Sheet 6
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Remember

absolutely convergent ⇒ convergent,
but

convergent ; absolutely convergent.

Tests for Convergence
Unlike Theorems 5.2 and 5.3 the following convergence tests do not re-

quire the use of a second series.

Theorem 6.3 (D’Alembert’s Ratio Test)

Let {an}n∈N be a sequence of non-zero real numbers and suppose the

sequence
{∣∣∣an+1

an

∣∣∣}
n∈N

is convergent with limit λ.

(i) If λ < 1, then
∑∞

r=1 ar converges absolutely.

(ii) If λ > 1, then
∑∞

r=1 ar diverges.

(If λ = 1, the test tells us nothing about the series and we need to
investigate further.)

Proof

The assumption that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = λ

means

∀ε > 0 ∃N ∈ N : ∀n ≥ N,

∣∣∣∣∣∣∣∣an+1

an

∣∣∣∣− λ

∣∣∣∣ < ε,

i.e.

∀ε > 0 ∃N ∈ N : ∀n ≥ N, λ− ε <

∣∣∣∣an+1

an

∣∣∣∣ < λ + ε, (13)

(i) Assume λ < 1. Choose ε = (1− λ) /2 (which is > 0 since λ < 1) so that
λ + ε = (1 + λ) /2 < 1. Note that λ + ε > 0 since λ ≥ 0.

Then from the upper bound in (13) we can find an N ∈ N such that

|an+1| < (λ + ε) |an| (14)

for all n ≥ N . Thus
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|aN+1| < (λ + ε) |aN | , (15)

|aN+2| < (λ + ε) |aN+1| < (λ + ε)2 |aN | ,
|aN+3| < (λ + ε) |aN+2| < (λ + ε)3 |aN | ,

In general we prove

0 < |aN+r| < (λ + ε)r |aN |

for all r ≥ 1 by induction. It holds for r = 1 by (15). Assume true for r = k.
Then consider

|aN+k+1| < (λ + ε) |aN+k| by (14)

< (λ + ε)(λ + ε)k |aN | by the inductive assumption

= (λ + ε)k+1 |aN | .

So the result is true for r = k + 1. Hence result is true for all r ≥ 1.

Since |λ + ε| < 1 the geometric series
∑∞

r=1(λ + ε)r |aN | is convergent.

Therefore, by the First Comparison Test, Theorem 5.2,
∑∞

r=1 |aN+r| =
∑∞

r=N+1 |ar|
is convergent and so

∑∞
r=1 |ar| is convergent by Theorem 4.2. Thus

∑∞
r=1 ar

is absolutely convergent.

(ii) Assume λ > 1. Choose ε = (λ− 1) /2 (which is > 0 since λ > 1) so that
λ− ε = (1 + λ) /2 > 1.

Then from the lower bound in (13) we can find an N ∈ N such that

|an+1| > (λ− ε) |an| > |an|

for all n ≥ N . Thus

|aN | < |aN+1| < |aN+2| < |aN+3| < ... .

In particular this means that the terms of the series, ar, do not converge
to 0. Hence, by Corollary 4.6, the series diverges. �

For applications, see Question 9, Sheet 6

Theorem 6.4 (Cauchy’s n-th root test.)

Let {an}n∈N be a sequence and suppose that {|an|1/n}n∈N converges with

limit λ.

(i) If λ < 1, then
∑∞

r=1 ar converges absolutely.
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(ii) If λ > 1, then
∑∞

r=1 ar diverges.

(If λ = 1, this test tells us nothing about the series and we need to
investigate further.)

Proof

Let ε > 0 be given. The assumption that limn→∞ |an|1/n = λ means there
exists N ∈ N such that ∣∣|an|1/n − λ

∣∣ < ε,

i.e λ− ε < |an|1/n < λ + ε,

or (λ− ε)n < |an| < (λ + ε)n ,

(16)

for all n > N .

(i) Assume λ < 1. Choose ε = (1− λ) /2 (which is > 0 since λ < 1) so
that λ + ε = (1 + λ) /2 < 1. Note that λ + ε > 0 since λ ≥ 0.

By the upper bound in (16) there exists N1 ∈ N such that |an| < (λ + ε)n

for all n ≥ N1.

Since λ+ ε < 1 the geometric series
∑∞

r=N1
(λ+ ε)n converges. So, by the

First Comparison Test,
∑∞

r=N1
|ar| converges.

Therefore,
∑∞

r=1 |ar| converges as required.

(ii) Assume λ > 1. Choose ε = (λ− 1) /2 (which is > 0 since λ > 1) so
that λ− ε = (1 + λ) /2 > 1.

By the lower bound in (16) there exists N2 ∈ N such that |an| > (λ + ε)n >
1n = 1 for all n ≥ N2. This means that the sequence {|an|}n≥1 does not con-

verge to 0, which in turn means that {an}n≥1 does not converge.

Hence, by Corollary 4.5,
∑∞

r=1 ar diverges. �

For applications see Question 18, Sheet 6

Power Series

Definition Let x be a real number and let {ar}r≥0 be a sequence. The series

∞∑
r=0

arx
r = a0 + a1x + a2x

2 + a3x
3 + ...

is called a power series in x. Note that the series starts at 0 and not 1.

So the geometric series of Section 4 are a particular type of power series,
namely ai = λ for all i ≥ 1.

5



Let S ⊆ R be the set of values of x for which the power series is conver-
gent. (Later we shall see that S is a special kind of set.)

Example Find those x for which
∑∞

r=0
xr

r!
is convergent.

Solution
Let an = xn

n!
. Then

|an+1|
|an|

=
|x|n+1

(n + 1)!

n!

|x|n
=

|x|
n + 1

,

so

lim
n→∞

|an+1|
|an|

= 0 for all x.

Thus, in the notation of the ratio test λ = 0 for all x and so
∑∞

r=0

∣∣xr

r!

∣∣
converges for all x. Then, by Theorem 6.1, we have that

∑∞
r=0

xr

r!
converges

for all x ∈ R. �

We can define a function exp: R → R by

exp(x) =
∞∑

r=0

xr

r!
.

By the above example it is seen that this function is well-defined for all x ∈ R.

For a general power series
∑∞

r=0 arx
r we can define a function f : S → R

by f(x) =
∞∑

r=0

arx
r.

Example Show that

∞∑
r=0

(−1)r x2r+1

(2r + 1)!
and

∞∑
r=0

(−1)r x2r

(2r)!

converge for all x ∈ R.

Solution
Use exactly the same method as in the above example, namely first use

the Ratio Test to show that both

∞∑
r=0

∣∣∣∣ x2r+1

(2r + 1)!

∣∣∣∣ and
∞∑

r=0

∣∣∣∣ x2r

(2r)!

∣∣∣∣
converge for all x ∈ R. Then apply Theorem 6.2 to get the stated result. �

These series define the functions sin : R → R and cos : R → R respec-
tively.

In the study of S we will make use of the following fundamental result.
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Lemma 6.5 Let
∑∞

r=0 arx
r be a power series.

(i) If the series converges for x0 ∈ R then it converges absolutely for
all x satisfying −|x0| < x < |x0|.

(ii) If the series diverges for x1 ∈ R then it diverges for all x satisfying
either x < −|x1| or x > |x1|.

Proof (i) If x0 = 0 there is nothing to prove since there are no x satisfying
−0 < x < 0. So we can assume that x0 6= 0. By Theorem 4.5, the fact that
the series

∑∞
r=0 arx

r
0 converges implies that limn→∞ anx

n
0 = 0.

By Theorem 3.2 this means that {anx
n
0}n∈N is bounded, i.e. there exists

M ≥ 0 such that |anx
n
0 | ≤ M for all n ∈ N.

Let x : −|x0| < x < |x0| be given. (The strict inequality is important.)

Let t =
|x|
|x0|

. Then 0 ≤ t < 1 and

0 ≤ |anx
n| = |anx

n
0 |tn ≤ Mtn

for all n ∈ N. Now apply the First Comparison Test. Since 0 ≤ t < 1
the geometric series

∑∞
r=0 Mtr converges and so

∑∞
r=0 |arx

r| converges, i.e.∑∞
r=0 arx

r converges absolutely. This is true for any x : −|x0| < x < |x0|.

(ii) This is simply (i) rewritten (if (ii) did not hold then we would get a
contradiction with (i)). �

Terminology Let R > 0. We call (−R,R), (−R,R], [−R,R) and [−R,R],
intervals about 0 with radius R. For completeness we call {0} the interval
with radius 0 and R = (−∞,∞) the interval with infinite radius. The
defining features of these intervals are that they are sets such that if x satisfies
|x| < R then x is in the set while if |x| > R then x is not in the set.

Theorem 6.6 Let
∑∞

r=0 arx
r be a power series. Then the set of values of

x ∈ R for which the series converges (i.e. the set S) is an interval about 0.

Proof

There are three distinct cases:

(i)
∑∞

r=0 arx
r converges only for x = 0,

(ii)
∑∞

r=0 arx
rconverges for all x ∈ R,

(iii)
∑∞

r=0 arx
r converges for some x0 6= 0 and diverges for some

x1 6= 0.
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If case (i) holds the result follows with radius R = 0, and if case (ii) holds
then the result follows with R infinite.

Suppose case (iii) holds. Recall that

S =

{
x ∈ R :

∞∑
r=0

arx
r converges

}
.

By assumption S 6= R. We also have that
∑∞

r=0 arx
r
1 diverges. Then by

Lemma 6.5(ii)
∑∞

r=0 arx
r diverges for all x with |x| > |x1|. Hence if x ∈ S

we must have |x| ≤ |x1|, i.e. −|x1| ≤ x ≤ |x1|. Thus S is a bounded set, and
in particular, bounded above. Trivially 0 ∈ S and so S 6= ∅, i.e. non-empty.
Thus, since R is complete, S has a least upper bound. Set R = lubS.

We have to show that S has the properties of being an interval about 0
with radius R, namely that if x satisfies |x| < R then x ∈ S while if |x| > R
then x /∈ S.

Let x satisfy |x| < R. This means that |x| is not an upper bound for S
so we can find z ∈ S such that |x| < z ≤ R. (The difference between z and
|x| is the lack of modulus!) Since z ∈ S we have that

∑∞
r=0 arz

r converges.

But then, since |x| < z implies − |z| < |x| < |z| , we can apply Lemma 6.5(i)
to deduce that

∑∞
r=0 arx

r converges (absolutely), i.e. x ∈ S.

So we have shown: if |x| < R then x ∈ S.

Let x satisfy |x| > R. For a proof by contradiction assume that x ∈ S,
i.e.

∑∞
r=0 arx

r converges. Choose a real number z such that |x| > z > R.

Note that |x| > z > R ≥ 0 implies − |x| < z < |x|. So, by Lemma 6.5(i),
the facts x ∈ S and − |x| < z z < |x| mean that

∑∞
r=0 arz

r converges, i.e.

z ∈ S. Yet this means that z ≤ lubS = R, which contradicts z > R. So the
assumptions if false, hence x /∈ S.

So we have shown: if |x| > R then x /∈ S.

Hence S is an interval about 0. �

Definition The interval of radius R is called the interval of convergence
and R is called the radius of convergence.

Remarks (i) The proof of Theorem 6.6 shows that for x satisfying |x| < R
the power series converges absolutely.

(ii) To determine R we can often use the Ratio Test or the nth-root test.
In the example defining exp above we used the Ratio test as we do again in
the following.
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Example Determine the radius of convergence of
∑∞

r=1
xr

r
.

Solution
Let an = xn

n
. Then

|an+1|
|an|

=
|x|n+1

(n + 1)

n

|x|n
=

(
1− 1

n + 1

)
|x|,

in which case

lim
n→∞

|an+1|
|an|

= |x| for all x.

So, in the notation of Theorem 6.3, λ = |x| . Thus, if |x| < 1 when

limn→∞
|an+1|
|an| < 1 then by the Ratio Test, the series converges (absolutely).

If |x| > 1, in which case limn→∞
|an+1|
|an| > 1, then by the Ratio Test, the

series diverges.

Therefore, the radius of convergence is 1. �

A further application of the ratio test is

Example Determine the radius of convergence of
∑∞

r=0(3
r + 7r)xr.

Solution

Rough Work
For very large r the coefficient (3r + 7r) is essentially the same as 7r

and the series “looks like”
∑

(7x)r. This is a geometric series which we
know converges if |7x| < 1, i.e. |x| < 1

7
. So we might expect the radius of

convergence to be 1
7
.

End of rough work.

Let an = (3n + 7n)xn. Then

|an+1|
|an|

=

∣∣∣∣(3n+1 + 7n+1)xn+1

(3n + 7n)xn

∣∣∣∣ =

(
3
(

3
7

)n
+ 7(

3
7

)n
+ 1

)
|x|

so

lim
n→∞

|an+1|
|an|

= 7|x| for all x.

So, if |x| < 1
7

then limn→∞
|an+1|
|an| < 1 and thus, by the Ratio Test, the

series converges.

If |x| > 1
7

then limn→∞
|an+1|
|an| > 1 and thus, by the Ratio Test, the series

diverges.

Therefore, the radius of convergence is 1
7
. �
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An application of the nth-root test is given in

Example Find the radius of convergence for
∑∞

r=1

(
3 + 7

r

)r
xr.

Solution

Here an =
(
3 + 7

n

)n
xn so |an|1/n =

(
3 + 7

n

)
|x| and limn→∞ |an|1/n = 3 |x|.

Hence, in the notation of Theorem 6.5, λ = 3 |x| and so, from that result, the
series converges absolutely if 3|x| < 1, i.e. |x| < 1

3
, and diverges if 3|x| > 1,

that is, |x| > 1
3
. Thus the radius of convergence is 1

3
. �

Note We can use the ratio and nth-root tests to find R but they wont tell
us everything about the interval of convergence. In particular they will not
tell us what happens at the end points x = R and x = −R. You will have
to examine these two cases separately.

*Example Determine the intervals of convergence of
∑∞

r=1
xr

r
and

∑∞
r=0(3

r+
7r)xr.

Solution For
∑∞

r=1
xr

r
we have to check x = ±1. When x = 1 we get the

Harmonic Series which diverges. When x = −1 we get a series that converges
by the alternating series test. Hence the interval of convergence is [−1, 1).

For
∑∞

r=0(3
r +7r)xr we have to check x = ±1/7. For both of these values

we see that

|(3r + 7r)xr| =
∣∣∣∣(3r + 7r)

7r

∣∣∣∣ > 1

for all r ≥ 1. In particular the terms of the series do not tend to zero and so
the series cannot converge. Hence, the interval of convergence is

(
−1

7
, 1

7

)
. �

Finally we can state a form of the ratio and nth-root tests that are ap-
propriate for power series. To stop confusion with the notation of Theorem
5.7 write our power series as

∑∞
r=0 brx

r.

Theorem 6.7 Assume either, the sequence
{∣∣∣ bn+1

bn

∣∣∣}
n∈N

converges with limit

λ or the sequence
{
|bn|1/n

}
n∈N

converges with limit λ.

(i) If λ 6= 0 and |x| < 1
λ
, then

∑∞
r=0 brx

r converges absolutely.

(ii) If λ 6= 0 and |x| > 1
λ
, then

∑∞
r=0 brx

r diverges.

(iii) If λ = 0, then
∑∞

r=0 brx
r converges absolutely for all x.
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In particular, if λ 6= 0 the radius of convergence is 1
λ

while if λ = 0 the
radius is infinite.

Proof (Left to student but see the appendix.)

Appendix

Theorem 6.2 (Alternating Series Test)

Let
∑∞

r=1(−1)r+1ar = a1−a2 +a3−a4 + ... be a series with ar > 0 for all r. Suppose
that the sequence {an} is decreasing with limit 0.

Then
∑∞

r=1(−1)r+1ar is convergent.

Proof Not given in course.
Rough work

s1 = a1,

s2 = a1 − a2 ≤ a1 = s1,

s3 = a1 − a2 + a3 ≥ a1 − a2 = s2,

...

So the partial sums satisfy s1 ≥ s2, s2 ≤ s3, s3 ≥ s4, s4 ≤ s5, ... . That is, the sequence
of partial sums “jumps” down from s1, up from s2, down from s3, up from s4, etc. But,
since limn→∞ an = 0 these jumps get smaller and smaller, and the sequence will converge,
to a value less than all the sn with n odd but larger than all the sn with n even. A method
of proof would be a sandwich type argument where we show that

lim
n→∞
n odd

sn = lim
n→∞
n even

sn.

End of rough work

Let sn be the nth partial sum of
∑∞

r=1(−1)r+1ar. Then, for all m ∈ N we have for the
partial sums of odd length

s2m+1 − s2m−1 = (−1)2m+2a2m+1 + (−1)2m+1a2m

= a2m+1 − a2m

≤ 0, since {an} is decreasing.

Hence s2m+1 ≤ s2m−1 for all m ∈ N, i.e. s1 ≥ s3 ≥ s5 ≥ ... , a decreasing sequence.

Also, on bracketing,

s2m+1 = (a1 − a2) + (a3 − a4) + (a5 − a6) + ... + (a2m−1 − a2m) + a2m+1

≥ 0 since a2n−1 − a2n ≥ 0 for all n and a2m+1 ≥ 0.
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Hence s1 ≥ s3 ≥ s5 ≥ ... is a decreasing sequence bounded below by 0 and so, by Theorem
3.5, it converges to a limit α, say.

Similarly, for the partial sums of even length,

s2m+2 − s2m = (−1)2m+3a2m+2 + (−1)2m+2a2m+1

= −a2m+2 + a2m+1

≥ 0, since {an} is decreasing.

Also, on bracketing in a different manner to above,

s2m = a1 − (a2 − a3)− (a4 − a5)− (a6 − a7)− ...− (a2m−2 − a2m−1)− a2m

≤ a1, since a2n−1 − a2n ≥ 0 for all n and a2m ≥ 0.

Hence s2 ≤ s4 ≤ s6 ≤ ... is a increasing sequence bounded above by a1, so by Theorem
3.4 it converges with limit β, say.

We next show that α = β by examining

|β − α| = |β − s2m + s2m − s2m+1 + s2m+1 − α|
≤ |β − s2m|+ |s2m − s2m+1|+ |s2m+1 − α|
= |β − s2m|+ |a2m+1|+ |s2m+1 − α| .

Let ε > 0 be given.

Then limm→∞ s2m = β implies that there exists N1 ∈ N such that

|β − s2m| <
ε

3
for all m ≥ N1. (16)

Similarly, limn→∞ an = 0 implies that there exists N2 ∈ N such that

|an| <
ε

3
for all n ≥ N2.

Finally, limm→∞ s2m+1 = α means that there exists N3 ∈ N such that

|s2m+1 − α| < ε

3
for all m ≥ N3. (17)

Choose any m0 > N = max(N1, N2, N3). Then

|β − α| ≤ |β − s2m0 |+ |a2m0+1|+ |s2m0+1 − α| < 3
ε

3
= ε.
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Since this is true for all ε > 0 we must have |β − α| = 0, that is, α = β. Call this common
value `.

So finally, given n ≥ N, if n is even we have from (16) that |sn − `| < ε
3 < ε, while

if n odd we have from (17) that, |`− sn| < ε
3 < ε. Thus in all cases |sn − `| < ε and so

{sn}n∈N converges. �

Theorem 6.7 Assume either, the sequence
{∣∣∣ bn+1

bn

∣∣∣} converges with limit λ or the se-

quence
{
|bn|1/n

}
converges with limit λ.

(i) If λ 6= 0 and |x| < 1
λ , then

∑∞
r=0 brx

r converges absolutely.

(ii) If λ 6= 0 and |x| > 1
λ , then

∑∞
r=0 brx

r diverges.

(iii) If λ = 0, then
∑∞

r=0 brx
r converges absolutely for all x.

In particular, if λ 6= 0 the radius of convergence is 1
λ while if λ = 0 the radius is

infinite.

Proof (Left to student.)
Assume that limn→∞

∣∣∣ bn+1
bn

∣∣∣ = λ, in which case, limn→∞

∣∣∣ bn+1xn+1

bnxn

∣∣∣ = λ |x|. So if either

λ = 0 or λ 6= 0 and |x| < 1
λ then limn→∞

∣∣∣ bn+1xn+1

bnxn

∣∣∣ < 1 and it follows from Theorem

6.3 that the power series converges absolutely. Otherwise, if λ 6= 0 and |x| > 1
λ then

limn→∞

∣∣∣ bn+1xn+1

bnxn

∣∣∣ < 1 and by Theorem 6.3 the series diverges.

Alternatively, assume that limn→∞ |bn|1/n = λ, in which case, limn→∞ |bnxn|1/n =
λ |x|. So if either λ = 0 or λ 6= 0 and |x| < 1

λ then limn→∞ |bnxn|1/n
< 1 and it follows

from Theorem 6.4 that the power series converges absolutely. Otherwise, if λ 6= 0 and
|x| > 1

λ then limn→∞ |bn|1/n
> 1 and by Theorem 6.4 the series diverges. �
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