Section 6 Series in General

We now consider series in which some, and in fact possibly infinitely
many, of the terms are negative. Given such a series Y-, a, we might first
think to examine >~ |a,|, a series of non-negative terms to which we could
apply the results of section 5.

The convergence of the two series are related by
Theorem 6.1 Let > 7 a, be a series. If > 7 |a,| is convergent then
> 2, a, is convergent.

Proof
Assume Y 7 |a,| is convergent.

From the definition of modulus we have that

—la.| < a, < |a,| for all r > 1,

and so

0 <a, + |a;| <2|a,| for all » > 1. (12)

By Theorem 4.4 we know that we can multiply a convergent series term-by-
term by a constant and still have a convergent series, and so in particular
Y2, 2|a,| is convergent. Then by the First Comparison Test and (12) we de-
duce that > 2 (a, + |a,|) is convergent. Finally we use Theorem 4.4 again,
this time it tells us we can add or subtract convergent series to get new
convergent series. In particular we can deduce that

o

ZGT = Z ((ar + |ar]) = la])

r=1

is convergent. |

Definition A series )~ a, is called absolutely convergent if >~ |a,|

is convergent.

Note We can write Theorem 6.1 as:

absolutely convergent = convergent.
For applications see Question 2, Sheet 6.

In this course we do not come across many series that are not absolutely
convergent.

Definition A series is said to be alternating if its terms are alternatively
positive and negative.



Example

r=1
is an alternating series.
Theorem 6.2 (Alternating Series Test)

Let Y72 (=1)""a, = a1 — as + a3 — as + ... be a series with a, > 0 for
all 7. Suppose that the sequence {a, }nen is decreasing with limit 0.

Then Y 2 (—1)"*ta, is convergent.
Proof The proof is not examinable so I have relegated it to the appendix.

Example

& 1
Show that > (—1)""'= is convergent.
r

r=1

Solution

The sequence a, = 1, r > 1, is obviously decreasing. It is equally obvious
that lim,_ ., a, = 0. '

Hence, by Theorem 6.2, Zfol(—l)”“% converges. |

This example shows that the converse of Theorem 6.1 is FALSE. For we
now have an example of a series, namely, Y >~ (—1)"*'1 which is convergent

but for which

[e.e]

Z (_1)r+1% _ Z%

r=1

is divergent, being the Harmonic Series.

Definition A series is said to be conditionally convergent if >~ a,

converges yet »_ - |a,| diverges.
r=1

1
So Y %@ (—1)T+1; is a conditionally convergent series.

For more examples see Question 1 Sheet 6



Remember

absolutely convergent = convergent,
but
convergent #- absolutely convergent.

Tests for Convergence

Unlike Theorems 5.2 and 5.3 the following convergence tests do not re-
quire the use of a second series.

Theorem 6.3 (D’Alembert’s Ratio Test)

Let {an}nen be a sequence of non-zero real numbers and suppose the

An+1
an

sequence { } is convergent with limit A.
neN

(i) If A <1, then )2 a, converges absolutely.
(ii) If A > 1, then Y7 a, diverges.

(If A = 1, the test tells us nothing about the series and we need to
investigate further.)

Proof
The assumption that

lim |42 =

n—oo Qp,
means

Ve >03N eN :Vn> N, || 22t —A‘ <e,
ap,
1.e.
Ve>0INeEN :Vn> N A—e< |2 <\ ye (13)
an

(i) Assume A < 1. Choose € = (1 — \) /2 (which is > 0 since A < 1) so that
A+e=(1+2X)/2<1. Note that A+ > 0 since A > 0.

Then from the upper bound in (13) we can find an N € N such that

|ans1| < (A +€)an| (14)
for all n > N. Thus



lant1| < (A+¢)lan], (15)
lantol < (A +e)lania] < (A +e)|an],
lanys| < (A +e)lansal < (A +¢)? |an],

In general we prove

0 < |anir| < (A+¢)" |an|

for all » > 1 by induction. It holds for » = 1 by (15). Assume true for r = k.
Then consider

lansre1] < (A+e) |aniil by (14)
< A+e)A+e)flay| Dby the inductive assumption
= (Ao ay]|.

So the result is true for » = k + 1. Hence result is true for all r > 1.
Since |A + ¢| < 1 the geometric series Y~ (A + ¢€)" lay| is convergent.
Therefore, by the First Comparison Test, Theorem 5.2, Y7 | |anir| = D02 vy |axr|

o0

is convergent and so Y-, |a,| is convergent by Theorem 4.2. Thus ) 7, a,
is absolutely convergent.

(ii) Assume A > 1. Choose € = (A — 1) /2 (which is > 0 since A > 1) so that
A—e=(14+X)/2>1.
Then from the lower bound in (13) we can find an N € N such that

|ant1] > (A =€) |an| > |an]
for all n > N. Thus

|(IN| < |CLN+1| < |aN+2| < |CLN+3| < ...

In particular this means that the terms of the series, a,, do not converge
to 0. Hence, by Corollary 4.6, the series diverges. |

For applications, see Question 9, Sheet 6
Theorem 6.4 (Cauchy’s n-th root test.)
Let {a, }nen be a sequence and suppose that {|a,|"/"},en converges with
limit A.
(i) If A <1, then )2 a, converges absolutely.
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(ii) If A > 1, then Y7 a, diverges.
(If A = 1, this test tells us nothing about the series and we need to
investigate further.)

Proof
1/n _

Let € > 0 be given. The assumption that lim,_. |a,|'/™ = A means there
exists NV € N such that

llan'™ = A| < e,
i.e A= <Jap|V" < X +e, (16)
or A=) <la,| < (A+e)",
for all n > N.

(i) Assume A < 1. Choose € = (1 — \) /2 (which is > 0 since A < 1) so
that A +¢ = (1+ ) /2 < 1. Note that A +¢ > 0 since A > 0.

By the upper bound in (16) there exists N7 € N such that |a,| < (A +¢&)"
for all n > Nj.

Since A +¢ < 1 the geometric series )\ (A4 ¢€)" converges. So, by the

. . (o]
First Comparison Test, » 7y |a,| converges.
oo .
Therefore, > ", |a,| converges as required.

(ii) Assume A > 1. Choose € = (A — 1) /2 (which is > 0 since A > 1) so
that \ —e=(14+X)/2> 1

By the lower bound in (16) there exists N, € N such that |a,| > (A +¢)" >
1" =1 for all n > N,. This means that the sequence {|a,|},~, does not con-

verge to 0, which in turn means that {a,},-, does not converge.

Hence, by Corollary 4.5, > a, diverges. |
For applications see Question 18, Sheet 6

Power Series

Definition Let x be a real number and let {a, },>¢ be a sequence. The series

o0
Z a,x" = ap + a1z + asx® + azz + ...
r=0
is called a power series in x. Note that the series starts at 0 and not 1.

So the geometric series of Section 4 are a particular type of power series,
namely a; = A for all ¢ > 1.



Let & C R be the set of values of x for which the power series is conver-
gent. (Later we shall see that S is a special kind of set.)

Example Find those x for which >~ Z is convergent.

Solution
Let a,, = % Then

anal el n ol
|| (n+D!xl» n+4+1

SO

hm |an+1| — 0
n—oo |an|

Thus, in the notation of the ratio test A = 0 for all z and so 2,

converges for all z. Then, by Theorem 6.1, we have that Y >, % converges
for all x € R. |

We can define a function exp: R — R by

for all z.

z”
r!

o0 r

exp(z) = Z %

r=0
By the above example it is seen that this function is well-defined for all x € R.

For a general power series >~ a,x” we can define a function f: S — R
o0
by f(z) = > a.a".
r=0

Example Show that

oo 2+l oo o
;(_ )T(Zr—i—l)! and ;(_1) (2r)!

converge for all x € R.

Solution
Use exactly the same method as in the above example, namely first use
the Ratio Test to show that both

i 72+l i T2
— and —
—|(2r+1)! —|(2r)!

converge for all x € R. Then apply Theorem 6.2 to get the stated result.

These series define the functions sin : R — R and cos : R — R respec-
tively.
In the study of S we will make use of the following fundamental result.



Lemma 6.5 Let >~ a,2" be a power series.

(i) If the series converges for o € R then it converges absolutely for
all = satisfying —|zo| < & < |zo].

(ii) If the series diverges for 7 € R then it diverges for all x satisfying
either x < —|z1| or & > |z4].

Proof (i) If zp = 0 there is nothing to prove since there are no x satisfying
—0 < x < 0. So we can assume that zy # 0. By Theorem 4.5, the fact that
the series Z:io a,x( converges implies that lim,,_. a,zj = 0.

By Theorem 3.2 this means that {a,z{ },en is bounded, i.e. there exists
M > 0 such that |a,z{| < M for all n € N.

Let x : —|xg| < x < |zo| be given. (The strict inequality is important.)
Lett:%. Then 0 <t <1 and
Zo

0 < |apa™| = |apzg|t" < Mt"
for all n € N. Now apply the First Comparison Test. Since 0 < t < 1

the geometric series Y >~ Mt" converges and so »_ - |a,x"| converges, i.e.

> ooy arx” converges absolutely. This is true for any x : —|zg| < z < |zo|.

(ii) This is simply (i) rewritten (if (ii) did not hold then we would get a
contradiction with (i)). [

Terminology Let R > 0. We call (—R,R),(—R, R|,[—R, R) and [—R, R|,
intervals about 0 with radius R. For completeness we call {0} the interval
with radius 0 and R = (—o00,00) the interval with infinite radius. The
defining features of these intervals are that they are sets such that if x satisfies
|z| < R then x is in the set while if |z| > R then z is not in the set.

Theorem 6.6 Let ) a,z" be a power series. Then the set of values of

x € R for which the series converges (i.e. the set §) is an interval about 0.

Proof
There are three distinct cases:
(i) >0, arx" converges only for z =0,
(i) > 2, a,z"converges for all z € R,

(iif) >°2,a,z" converges for some zy # 0 and diverges for some
T1 7é 0.



If case (i) holds the result follows with radius R = 0, and if case (ii) holds
then the result follows with R infinite.
Suppose case (iii) holds. Recall that

S = {:c eR: Zaﬂv’” converges} :

r=0
By assumption S # R. We also have that > a,z] diverges. Then by
Lemma 6.5(ii) > 2 a,2" diverges for all x with |z| > |z;|. Hence if z € S
we must have |z| < |z1], i.e. —|z1] <2z < |z1]. Thus S is a bounded set, and

in particular, bounded above. Trivially 0 € S and so S # (), i.e. non-empty.
Thus, since R is complete, S has a least upper bound. Set R = lubS.

We have to show that S has the properties of being an interval about 0
with radius R, namely that if x satisfies |z| < R then x € S while if |z| > R
then = ¢ S.

Let z satisfy |z| < R. This means that |z| is not an upper bound for S
so we can find z € § such that |z| < z < R. (The difference between z and
|z| is the lack of modulus!) Since z € S we have that )2 a,z" converges.
But then, since |z| < z implies — |z| < |z| < |z|, we can apply Lemma 6.5(i)
to deduce that >~ a,z" converges (absolutely), i.e. z € S.

So we have shown: if || < R then x € S.

Let z satisfy |z| > R. For a proof by contradiction assume that z € S,
ie. > 2 a,z" converges. Choose a real number z such that |z| > z > R.
Note that |z| > z > R > 0 implies — |z| < z < |z|. So, by Lemma 6.5(i),
the facts + € S and —|z| < z z < |z| mean that) ~ a,2" converges, i.e.

z € S. Yet this means that z < [ubS = R, which contradicts z > R. So the
assumptions if false, hence = ¢ S.

So we have shown: if |z] > R then x ¢ S.

Hence S is an interval about 0. [ |

Definition The interval of radius R is called the interval of convergence
and R is called the radius of convergence.

Remarks (i) The proof of Theorem 6.6 shows that for x satisfying |z| < R
the power series converges absolutely.

(ii) To determine R we can often use the Ratio Test or the n'*-root test.
In the example defining exp above we used the Ratio test as we do again in
the following.



Example Determine the radius of convergence of 7 | £-.

Solution
Let a,, = % Then

a1 x| n 1
- (1= 2
o~ (b Dl il

in which case

lim |an+1|

= |z| for all z.

So, in the notation of Theorem 6.3, A\ = |z|. Thus, if |z| < 1 when
lim,, 0 % < 1 then by the Ratio Test, the series converges (absolutely).

If |z| > 1, in which case lim,, . lana 1, then by the Ratio Test, the

lan|

series diverges.

Therefore, the radius of convergence is 1. |
A further application of the ratio test is

Example Determine the radius of convergence of » 2 (3" + 7")z".
Solution

Rough Work

For very large r the coefficient (3" + 77) is essentially the same as 7"
and the series “looks like” > (7z)". This is a geometric series which we
know converges if |7z| < 1, i.e. |z[ < 2. So we might expect the radius of
convergence to be %

End of rough work.

Let a,, = (3" + 7")2". Then

’an-i-l’ (3n+1 + 7n+1)xn+1

N (37 4 T

SO

lim |(|ln+’1| =T|z| for all z.
n—oo |Gy,

So, if |z| < % then lim,,_, o “TZ—:‘” < 1 and thus, by the Ratio Test, the
series converges.

If |z| > % then lim,, . % > 1 and thus, by the Ratio Test, the series
diverges.

Therefore, the radius of convergence is % |



An application of the n**-root test is given in

Example Find the radius of convergence for > (3 + %)T x”.

Solution
Here a, = (34 2)" 2" s0 |a,|"™ = (3+ L) |2| and lim, o |a,["/" = 3|z].
Hence, in the notation of Theorem 6.5, A = 3 |x| and so, from that result, the

series converges absolutely if 3|z < 1, i.e. |z] < g, and diverges if 3|z| > 1,
that is, [«| > . Thus the radius of convergence is 3. |
Note We can use the ratio and n'"-root tests to find R but they wont tell
us everything about the interval of convergence. In particular they will not
tell us what happens at the end points x = R and x = —R. You will have

to examine these two cases separately.

*Example Determine the intervals of convergence of Y7 | £ and > 7 (3" +
)"

Solution For > 7, ””TT we have to check x = £1. When x = 1 we get the
Harmonic Series which diverges. When z = —1 we get a series that converges
by the alternating series test. Hence the interval of convergence is [—1,1).

For > 7 (3" +7")z" we have to check = £1/7. For both of these values
we see that

B +7)
7r
for all » > 1. In particular the terms of the series do not tend to zero and so

the series cannot converge. Hence, the interval of convergence is (—%, %) ]

(37 + 77| :‘ > 1

Finally we can state a form of the ratio and n'"-root tests that are ap-
propriate for power series. To stop confusion with the notation of Theorem
5.7 write our power series as » - ba".

bny1

Theorem 6.7 Assume either, the sequence { -

} converges with limit
neN
A or the sequence {|bn|1/ "} converges with limit A.
neN
(i) If A # 0 and |z] < §, then Y77 b2 converges absolutely.
(i) If A # 0 and |z| > §, then > 2 b.x" diverges.

(iii) If A = 0, then >~ b,2" converges absolutely for all z.
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In particular, if A # 0 the radius of convergence is % while if A = 0 the
radius is infinite.

Proof (Left to student but see the appendix.)

Appendix
Theorem 6.2 (Alternating Series Test)

Let Y02 (—1)"*'a, = a1 —as + a3 — as + ... be a series with a,. > 0 for all 7. Suppose
that the sequence {a,} is decreasing with limit 0.

Then Y 7, (—1)""1a, is convergent.

Proof Not given in course.

Rough work
S1 = 4ai,
S2 = a1 —az < ay = sy,
$3 = a1 —az+asz>a —az = Sg,
So the partial sums satisfy s; > s2, 55 < 83, S3 > S4, S4 < S5,... . That is, the sequence

of partial sums “jumps” down from s, up from s,, down from sz, up from s4, etc. But,
since lim,,_, o a, = 0 these jumps get smaller and smaller, and the sequence will converge,
to a value less than all the s,, with n odd but larger than all the s,, with n even. A method
of proof would be a sandwich type argument where we show that

lim s, = lim s,.
n—0o0 n n—oo n

n odd n even

End of rough work

Let s, be the n'™ partial sum of > 2  (—1)""'a,. Then, for all m € N we have for the
partial sums of odd length

Somt1 — Sam—1 = (=1)*"ag, 1 + (=1)*" ay,

A2m+1 — A2m

IN

0, since {a,} is decreasing.

Hence so;4+1 < som—1 for all m € N, ie. s1 > s3 > s5 > ..., a decreasing sequence.

Also, on bracketing,

Somt1 = (a1 —a2)+ (a3 —aq) + (a5 — ag) + ... + (G2m—1 — Q2m) + G2m+1
0 since agp—1 — agy > 0 for all n and agy,4+1 > 0.

v
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Hence s; > s3 > s5 > ... is a decreasing sequence bounded below by 0 and so, by Theorem
3.5, it converges to a limit «, say.

Similarly, for the partial sums of even length,

Somtz — Sam = (1) Bag, 0+ (=1 2ag,, 1

—a2m+2 T G2m+1

Y

0, since {a,} is decreasing.

Also, on bracketing in a different manner to above,

Som = a1 — (a2 —a3) — (a4 — as) — (ag — ar) — ... = (a2m—2 — A2m—1) — G2m
ay, since asy,—1 — as, > 0 for all n and as,, > 0.

IN

Hence s3 < s4 < sg < ... is a increasing sequence bounded above by a1, so by Theorem
3.4 it converges with limit 3, say.

We next show that a = § by examining

|ﬁ - Oé| = ‘ﬁ — Som + Som — S2m+1 + S2m+1 — 04|
S ‘/6 - 52m| + |82m - 82m+1‘ + |32m+1 - a|

1B = sam| + |azm+1] + [S2m+1 — o .

Let € > 0 be given.

Then lim,,, .o S2,m = ( implies that there exists N7 € N such that

|ﬂ—52m|<§f0r all m > N (16)

Similarly, lim,,_~, a,, = 0 implies that there exists Ny € N such that

lan| < % for all n > Ns.

Finally, lim;, o S2m+1 = @ means that there exists N3 € N such that

[som+1 — ] < % for all m > Ns. (17)

Choose any mgo > N = max(Ny, N, N3). Then

13
1B —a| <[B = s2me| + [a2mg+1| + [S2me+1 — @] < 33=e¢

12



Since this is true for all € > 0 we must have | — «| = 0, that is, « = 8. Call this common

value /.

So finally, given n > N, if n is even we have from (16) that [s, —£| < § < &, while
if n odd we have from (17) that, |{ — s,| < § < e. Thus in all cases |s, — £| < ¢ and so

Sn tnen converges. [ |
{sn}ne g

Theorem 6.7 Assume either, the sequence { batr

} converges with limit A or the se-

n

quence {|bn|1/ n} converges with limit A.
(i) If A # 0 and |z| < %, then Y7 b,a” converges absolutely.
(ii) If A # 0 and |z| > &, then Y. bya" diverges.
(iii) If A =0, then Y2/ b,x" converges absolutely for all z.
In particular, if A # 0 the radius of convergence is % while if A = 0 the radius is

infinite.

Proof (Left to student.)

+1
Assume that lim,, .

n
bn+137 '
bnmn

bn+1
by

= ), in which case, lim,, _,

= A|z|. Soif either

bn+1$n

A=0or\#0and |z] < 1 then lim, .o bnx:l‘ < 1 and it follows from Theorem

6.3 that the power series converges absolutely. Otherwise, if A # 0 and |z| > % then

bn+1 1,‘"

+1
lim,, 0 v ’ < 1 and by Theorem 6.3 the series diverges.

1/n 1/n —

Alternatively, assume that lim,, . |by,] = ), in which case, lim,_, o [bpz"]
Alz|. So if either A = 0 or A # 0 and |z| < % then lim, o |bnx"|1/n < 1 and it follows
from Theorem 6.4 that the power series converges absolutely. Otherwise, if A # 0 and

1/n

2| > § then limy, o |by| /" > 1 and by Theorem 6.4 the series diverges. [ |
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