Section 5 Series with non-negative terms

Theorem 5.1 Let $\sum_{r=1}^{\infty} a_{r}$ be a series with non-negative terms and let s_{n} be the n-th partial sum for each $n \in \mathbb{N}$. Then $\sum_{r=1}^{\infty} a_{r}$ is convergent if, and only if, $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is bounded.
Proof Since $a_{r} \geq 0$ for all $r \in \mathbb{N}$, then $s_{n+1}-s_{n}=a_{n+1} \geq 0$, i.e. $s_{n+1} \geq s_{n}$ for all $n \geq 1$ and so the sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ of partial sums is increasing.
(\Rightarrow) If $\sum_{r=1}^{\infty} a_{r}$ converges then $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ converges by definition. Hence, by Theorem 3.2, $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is bounded.
(\Leftarrow) Conversely, if $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is bounded then, in particular, it is bounded above. Since $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is also increasing, then $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is convergent by Theorem 3.4. Thus we have verified the definition that $\sum_{r=1}^{\infty} a_{r}$ is convergent.

Remark If the series of non-negative terms $\sum_{r=1}^{\infty} a_{r}$ is convergent, the sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is convergent and its limit, which is the sum of the series, is the $\operatorname{lub}\left\{s_{n}: n \in \mathbb{N}\right\}$. (See Theorem 3.4.)

The next result is a way of testing convergence or divergence by comparison with a known series.

Theorem 5.2 (First Comparison Test)
Let $\sum_{r=1}^{\infty} a_{r}$ and $\sum_{r=1}^{\infty} b_{r}$ be series with $0 \leq a_{r} \leq b_{r}$ for all $r \in \mathbb{N}$.
(i) If $\sum_{r=1}^{\infty} b_{r}$ is convergent then $\sum_{r=1}^{\infty} a_{r}$ is convergent. If $\sum_{r=1}^{\infty} b_{r}$ has sum τ and $\sum_{r=1}^{\infty} a_{r}$ has a sum σ, then $\sigma \leq \tau$.
(ii) If $\sum_{r=1}^{\infty} a_{r}$ is divergent, then $\sum_{r=1}^{\infty} b_{r}$ is divergent.

Proof

(i) Let s_{n} and t_{n} be the $n^{\text {th }}$ partial sums of $\sum_{r=1}^{\infty} a_{r}$ and $\sum_{r=1}^{\infty} b_{r}$, respectively. As in the proof of Theorem 5.1 both $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ are increasing sequences.

By hypothesis, $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ is convergent with limit τ. But $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ is increasing, so by Theorem 3.4, τ is the least upper bound of $\left\{t_{n}: n \in \mathbb{N}\right\}$.

Since $0 \leq a_{r} \leq b_{r}$ for all $r \in \mathbb{N}$, we have that

$$
0 \leq \sum_{r=1}^{n} a_{r} \leq \sum_{r=1}^{n} b_{r},
$$

i.e. $0 \leq s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$. Thus all the s_{n} are no greater than any upper bound of $\left\{t_{n}: n \in \mathbb{N}\right\}$, that is, $s_{n} \leq \tau$ for all $n \in \mathbb{N}$. So τ is an upper bound
for $\left\{s_{n}: n \in \mathbb{N}\right\}$.
Then, since $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is also increasing, we have again by Theorem 3.4 that $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is convergent with limit $\sigma=l u b\left\{s_{n}: n \in \mathbb{N}\right\}$. Being the least of all upper bounds σ is less than or equal to any upper bound of the $\left\{s_{n}: n \in \mathbb{N}\right\}$. In particular, $\sigma \leq \tau$.
(ii) Again, this is simply the contrapositive of part (i) (See the appendix within section 3 of these notes.)

Example Show that $\sum_{r=0}^{\infty} \frac{1}{3^{r}+1}$ is convergent and $\sum_{r=1}^{\infty} \frac{1}{r^{2 / 3}}$ is divergent.
Solution Firstly,

$$
0 \leq \frac{1}{3^{r}+1} \leq \frac{1}{3^{r}}
$$

and $\sum_{r=0}^{\infty} \frac{1}{3^{r}}$ converges since it is a Geometric Series with ratio $\frac{1}{3}$ (See Theorem 4.1). Hence our series converges.

Secondly,

$$
0 \leq \frac{1}{r} \leq \frac{1}{r^{2 / 3}}
$$

and the fact that $\sum_{r=1}^{\infty} \frac{1}{r}$ diverges is an earlier example. Hence our series diverges.

See also Question 6 Sheet 5
Theorem 5.3 (Second Comparison Test)
Let $\sum_{r=1}^{\infty} a_{r}$ and $\sum_{r=1}^{\infty} b_{r}$ be series such that $a_{r} \geq 0$ and $b_{r}>0$ for all $r \in \mathbb{N}$. Suppose that the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n \in \mathbb{N}}$ is convergent with limit $\ell \neq 0$.

Then $\sum_{r=1}^{\infty} a_{r}$ is convergent if and only if $\sum_{r=1}^{\infty} b_{r}$ is convergent.

Proof

Suppose that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ell$. Since $a_{n} \geq 0$ and $b_{n}>0$ we have $\frac{a_{n}}{b_{n}} \geq 0$ and thus $\ell \geq 0$. But, by assumption, $\ell \neq 0$, hence $\ell>0$.

We now apply Lemma 3.6 , concluding that there exists $N_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{\ell}{2}<\frac{a_{n}}{b_{n}}<\frac{3 \ell}{2} \tag{11}
\end{equation*}
$$

for all $n \geq N_{0}$.
(\Rightarrow) First suppose that $\sum_{r=1}^{\infty} a_{r}$ is convergent.

By Theorem 4.2 $\sum_{r=N_{0}}^{\infty} a_{r}$ is convergent.
By Theorem 4.4 $\sum_{r=N_{0}}^{\infty} \frac{2}{\ell} a_{r}$ is convergent.
From (11) we have

$$
0<b_{n}<\frac{2}{\ell} a_{n}
$$

for all $n \geq N_{0}$. So, by the First Comparison Test, $\sum_{r=N_{0}}^{\infty} b_{r}$ is convergent. Finally, by Theorem 4.2 again, $\sum_{r=1}^{\infty} b_{r}$ is convergent.
(\Leftarrow) Conversely, suppose that $\sum_{r=1}^{\infty} b_{r}$ is convergent.
By Theorem 4.2 $\sum_{r=N_{0}}^{\infty} b_{r}$ is convergent.
By Theorem $4.4 \sum_{r=N_{0}}^{\infty} \frac{3 \ell}{2} b_{r}$ is convergent.
This time we use (11) in the form

$$
0 \leq a_{n}<\frac{3 \ell}{2} b_{n}
$$

for all $n \geq N_{0}$. So, by the First Comparison Test, $\sum_{r=N_{0}}^{\infty} \frac{2}{3 \ell} a_{r}$ is convergent. Again $\sum_{r=1}^{\infty} a_{r}$ is convergent, justified by Theorems 4.2.

Note If the sequence $\left\{a_{n} / b_{n}\right\}_{n \in \mathbb{N}}$ is either divergent or has a zero limit then Theorem 5.3 tells us nothing. We have to either choose a different series $\sum b_{r}$ for comparison or use a different test on our given series $\sum a_{r}$.

We can use the Comparison tests to prove the following..

Theorem 5.4

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}}
$$

is convergent.
Solution. As before, the idea is to compare this series with

$$
\sum_{r=1}^{\infty} \frac{1}{r(r+1)}
$$

This may not look a "simpler" series but we saw in Theorem 4.8 that it is easy to sum.

Let $a_{n}=\frac{1}{n^{2}}$ and $b_{n}=\frac{1}{n(n+1)}$. Then $\frac{a_{n}}{b_{n}}=1+\frac{1}{n}$ and so $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \neq 0$. Hence by the Second Comparison test, Theorem 5.3, $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ is convergent.

Excercise for students; try to show that $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ converges, with sum less than 2, using the First Comparison Test.

Note In later courses it will be shown that $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ has sum $\pi^{2} / 6$.
Theorem 5.4 For $k \in \mathbb{Z}$ we have that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{k}} \quad \text { is }\left\{\begin{array}{c}
\text { convergent if } k \geq 2 \\
\text { divergent if } k \leq 1
\end{array}\right.
$$

Proof (Left to student)
Example Test the series

$$
\sum_{r=1}^{\infty} \frac{2 r^{2}+2 r+1}{r^{5}+2}
$$

for convergence.

Solution

Rough work
For large $r, 2 r^{2}+2 r+1$ is dominated by $2 r^{2}$ (i.e. if $r=1,000$ then $2 r^{2}$ differs from $2 r^{2}+2 r+1$ by less than 0.1%). Similarly $r^{5}+2$ is dominated by r^{5}, so for large r the sum will "look like" $\sum_{r} \frac{2}{r^{3}}$ which we know, by Theorem 5.4, converges.

End of rough work
Let

$$
a_{n}=\frac{2 n^{2}+2 n+1}{n^{5}+2}, \text { and } b_{n}=\frac{1}{n^{3}} .
$$

Then

$$
\frac{a_{n}}{b_{n}}=\frac{n^{3}\left(2 n^{2}+2 n+1\right)}{n^{5}+2}=\frac{2+\frac{2}{n}+\frac{2}{n^{2}}}{1+\frac{2}{n^{5}}}, \text { so } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=2 \neq 0 .
$$

Since, by Theorem 5.4, $\sum_{r=1}^{\infty} \frac{1}{r^{3}}$ is convergent, we can use the Second Comparison Test to deduce that $\sum_{r=1}^{\infty} \frac{2 r^{2}+2 r+1}{r^{5}+2}$ converges.
Example Test the series

$$
\sum_{r=1}^{\infty} \frac{r^{2}-2 r-3}{r^{3}-2}
$$

for convergence.

Proof

Rough work
For large r the general term of this series will "look like" $\frac{r^{2}}{r^{3}}=\frac{1}{r}$, the sum of which we know diverges.

End of rough work
Let

$$
a_{n}=\frac{n^{2}-2 n-3}{n^{3}-2}, \quad \text { and } \quad b_{n}=\frac{1}{n} .
$$

Then

$$
\frac{a_{n}}{b_{n}}=\frac{n\left(n^{2}-2 n-3\right)}{n^{3}-2}=\frac{1-\frac{2}{n}-\frac{3}{n^{2}}}{1-\frac{2}{n^{3}}}, \quad \text { so } \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \neq 0 .
$$

Since by an example above, the Harmonic series $\sum_{r=1}^{\infty} \frac{1}{r}$ is divergent, we can use the Second Comparison Test to deduce that $\sum_{r=1}^{\infty} \frac{r^{2}-2 r-3}{r^{3}-2}$ diverges.
Exercise for student: try to prove the last result using the First Comparison Test.

Remark In the last example we have cheated slightly as $a_{r}<0$ when $r=2$. The Comparison Test requires $a_{r} \geq 0$ for all r. However, this does not matter because we can apply the test to $\sum_{r=3}^{\infty} a_{r}$ and deduce that this is divergent. Then $\sum_{r=1}^{\infty} a_{r}$ must also be divergent. Thus the Comparison Tests can be applied to series $\sum_{r=1}^{\infty} a_{r}$ which have at most a finite number of negative terms.

Appendix
Theorem 5.5 For $k \in \mathbb{Z}$ we have that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{k}} \quad \text { is }\left\{\begin{array}{l}
\text { convergent if } k \geq 2 \\
\text { divergent if } k \leq 1 .
\end{array}\right.
$$

Proof If $k \geq 2$ then

$$
0<\frac{1}{r^{k}} \leq \frac{1}{r^{2}} .
$$

for all $r \in \mathbb{N}$. By Theorem 5.4, $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ is convergent. So by the First Comparison Test, Theorem 5.2, we deduce that $\sum_{r=1}^{\infty} \frac{1}{r^{k}}$ is convergent.

If $k \leq 1$ then

$$
\frac{1}{r} \leq \frac{1}{r^{k}}
$$

for all $r \in \mathbb{N}$. We have seen earlier that the Harmonic series, $\sum_{r=1}^{\infty} \frac{1}{r}$, is divergent. So by the First Comparison Test, Theorem 5.2, we deduce that $\sum_{r=1}^{\infty} \frac{1}{r^{k}}$ is divergent.
Note I have restricted to $k \in \mathbb{Z}$ in Theorem 5.5 since I have not defined r^{k} when $r \in \mathbb{N}$, for a general $k \in \mathbb{R}$. For example, how would we define $2^{\sqrt{2}}$ or 3^{π} ?

But we can define r^{k} when $k \in \mathbb{Q}$. For when $k \in \mathbb{Q}$ we can write $k=p / q$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Then we can define $r^{k}=\left(r^{1 / q}\right)^{p}$ where $r^{1 / q}$ is the positive real root of $x^{q}-r=0$.

With this definition we can extend Theorem 5.5: Let $k \in \mathbb{Q}$. Then

$$
\sum_{r=1}^{\infty} \frac{1}{r^{k}} \quad \text { is }\left\{\begin{array}{l}
\text { convergent if } k>1 \\
\text { divergent if } k \leq 1 .
\end{array}\right.
$$

This shows that the case $k=1$, the Harmonic series, is on the boundary between convergence and divergence. In particular, it diverges but it does so slowly.

