
Section 4 Series
Definition Let {an}n∈N be a sequence of real numbers. The infinite sum

a1 + a2 + a3 + ...

is called a series. We call an the n-th term of the series. We denote a1 +
a2 + a3 + ... by

∑∞
r=1 ar.

Examples∑∞
r=1(−1)rr = (−1) + 2 + (−3) + 4 + .... ,∑∞
r=1

1
r

= 1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ ... ,∑∞
r=1

1
r2 = 1 + 1

4
+ 1

9
+ 1

16
+ 1

25
+ ... .

Definition Let a1+a2+a3+ ... be a series. For each n ∈ N, the n-th partial
sum is the sum of the first n terms, i.e.

sn = a1 + a2 + a3 + ... + an or sn =
n∑

r=1

ar. (5)

Examples
∑∞

r=1(−1)rr. In this case the sequence of partial sums starts
s1 = −1, s2 = 1, s3 = −2, s4 = 2, ... , that is we get the sequence −1, 1,−2, 2,
−3, 3, −4, 4, ... .∑∞

r=1
1
r
. In this case we get the sequence 1, 1.5.1.83, 2.083, 2.283, 2.45, 2.5928, ..∑∞

r=1
1
r2 . In this case we get 1, 1.25, 1.361, 1.42361, 1.46361, 1.49138, ...

So given a series a1 + a2 + a3 + ... we obtain a sequence of partial sums
s1, s2, s3, ... . This sequence is either convergent or divergent.

Definition The series a1+a2+a3+... is said to be convergent if the sequence
of partial sums {sn}n∈N is convergent. In this case the limit, limn→∞ sn, is
called the sum of the series a1 + a2 + a3 + ... .

The series a1 + a2 + a3 + ... is said to be divergent if the sequence of
partial sums {sn}n∈N is divergent.

Example

Show that
∑∞

r=1(−1)rr is divergent,

Solution
As we saw above the partial sums are −1, 1,−2, 2, −3, 3, −4, 4, ... which

can be given by the formula −
(

n+1
2

)
if n odd and n

2
if n even. So the sequence
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is unbounded and thus it diverges. Hence the series diverges. �

Question Do
∑∞

r=1
1
r

and
∑∞

r=1
1
r2 converge or diverge? We cannot answer

these questions until after Corollary 4.6 and Theorem 5.4 respectively.

Definition With x, λ ∈ R, then
∑∞

r=0 λxr is called a geometric series, λ is

the first term and x is the common ratio between successive terms. Note
that this series starts at 0 and not 1, and we take x0 to be 1 for all x, so the
partial sum of the first n terms is

sn = λ + λx + λx2 + ... + λxn−1. (6)

We can calculate this sum for general x.

Theorem 4.1 Let λ, x ∈ R with λ 6= 0.

(i) If |x| < 1, then
∑∞

r=0 λxr is convergent with sum λ
1−x

.

(ii) If |x| ≥ 1, then
∑∞

r=0 λxr is divergent.

Proof
Let sn be the nth partial sum so, for all x,

xsn = x(λ + λx + λx2 + ... + λxn−1) by (6),

= λx + λx2 + λx3... + λxn + λxn

by the distributive law, allowable since only a

finite number of additions in bracket,

= (λ + λx + λx2 + ... + λxn−1)− λ + λxn “adding in zero”

= sn − λ + λxn.

Thus

(1− x)sn = λ(1− xn). (7)

(i) If |x| < 1 then 1− x 6= 0 so we can rearrange (7) to get

sn =
λ(1− xn)

(1− x)
. (8)

By Theorem 3.10 {xn}n∈N converges, with limit 0. Hence, by Corollary

3.8, {sn}n∈N converges with limit λ
1−x

.

Thus
∑∞

r=0 λxr converges with sum
λ

1− x
.
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(ii) If x = 1 then from (6) we have sn = λn for all n ≥ 1 and so, since λ 6= 0,
the sequence of partial sums diverges.

If either x = −1 or |x| > 1 then 1− x 6= 0 and so we get (8) again. But
Theorem 3.10 tells us this time that {xn}n∈N diverges as must {sn}n∈N (again
using λ 6= 0).

So in all cases when |x| ≥ 1 we have that {sn}n∈N, and thus the geometric
series, diverges. �

As noted above, the geometric series starts at r = 0 while I chose the
general series to start at r = 1 (so that the formula for sn in (5) was straight-
forward). This makes no difference to convergence as is seen in

Theorem 4.2 Let
∑∞

r=0 ar be a series and let k ∈ N. Then
∑∞

r=0 ar is

convergent if and only if
∑∞

r=k ar is convergent. If
∑∞

r=0 ar has sum σ then∑∞
r=k ar has a sum σ − (a0 + ... + ak−1) .

Proof (Left to student but see the appendix.)

Example Show that

∞∑
r=1

1

2r

is convergent with sum 1.

Solution
Note that this series does not start at r = 0 as geometric series should.

Instead we can let j = r− 1 in which case the sum over j will start at 0 and
is given by

∞∑
j=0

1

2j+1
=

∞∑
j=0

1

2

(
1

2

)j

which is now of the correct form and so we can apply Theorem 4.1 (a) with
x = 1/2 and λ = 1/2 to get

∞∑
j=0

1

2

(
1

2

)j

=
1/2

(1− 1/2)
= 1.

Alternatively we can apply Theorem 4.2. So we first evaluate
∑∞

r=0
1
2r ,

which we do by applying Theorem 4.1(a) with x = 1/2 and λ = 1 to get

∞∑
r=0

1

2r
=

1

(1− 1/2)
= 2.
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Then Theorem 4.2 gives

∞∑
r=1

1

2r
=

∞∑
r=0

1

2r
− 1 = 1.

�

It was easy to sum the geometric series in Theorem 4.1 because the partial
sums sn in (6) had a simple form in (8). There are other cases where the
partial sums have a simple form.

Theorem 4.3 The series

∞∑
r=1

1

r (r + 1)

converges with sum 1.
Proof

A simple application of partial fractions shows that

1

r (r + 1)
=

1

r
− 1

r + 1
.

So the nth partial sum can be written as

sn =
1

1.2
+

1

2.3
+

1

3.4
+ ... +

1

n. (n + 1)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ ... +

(
1

n
− 1

n + 1

)
= 1 +

(
−1

2
+

1

2

)
+

(
−1

3
+

1

3

)
+

(
−1

4
+

1

4

)
+ ... +

(
− 1

n
+

1

n

)
− 1

n + 1

= 1− 1

n + 1
.

Hence the sequence {sn}n∈N converges as, thus, does the series with sum
equal to limn→∞ sn = 1. �

See Question 4 sheet 4

The next question is what operations can we do to infinite sums. For
instance, for finite sums we know that

λ(a1 + a2 + ... + an) = λa1 + λa2 + ... + λan.
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This can be proved by applying the distributive law (i.e. Property 3 of R)
n− 1 times. But can we say

λ(a1 + a2 + ...) = λa1 + λa2 + ... (9)

when we have infinite series. We don’t have the “time” to apply the distribu-
tive law infinitely many times. But if we remember that the value we give
to an infinite sum is a limit, limn→∞ sn, we can recall a result on limits of
convergent sequences, Corollary 3.8(i), that gives λ limn→∞ sn = limn→∞ λsn.
Then for each n we will be able to use the distributive law to say something
of λsn. In this way we can prove (9). Similarly, the associative law (Property
2 of R) gives

(a1 + a2 + ... + an) + (b1 + b2 + ... + bn)

= (a1 + b1) + (a2 + b2) + ... + (an + bn).

By looking at limits we can give the infinite sum result

(a1 + a2 + ...) + (b1 + b2 + ...) = (a1 + b1) + (a2 + b2) + ...

or
∞∑

r=1

ar +
∞∑

r=1

br =
∞∑

r=1

(ar + br).

Both these results are given in the following.

Theorem 4.4 Let
∑∞

r=1 ar,
∑∞

r=1 br be convergent series with sums σ and τ

respectively and let λ, µ ∈ R. Then the series
∑∞

r=1(λar + µbr) is convergent

with sum λσ + µτ.

Proof
Let sn, tn be the nth partial sums of

∑∞
r=1 ar,

∑∞
r=1 br respectively. Then

the nth partial sum

n∑
r=1

(λar + µbr) = (λa1 + µb1) + (λa2 + µb2) + ... + (λan + µbn)

= (λa1 + λa2 + ... + λan) + (µb1 + µb2... + µbn)

associative law

= λ(a1 + a2 + ... + an) + µ(b1 + b2 + ... + bn)

distributive law

= λsn + µtn.

But we are given that limn→∞ sn = σ and limn→∞ tn = τ so by Theo-
rem 3.7 and Corollary 3.8 we find that {λsn + µtn}n∈N is convergent with
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limn→∞(λsn + µtn) = λσ + µτ . Therefore , by definition,
∑∞

r=1(λar + µbr) is

indeed convergent with sum λσ + µτ. �

With this result we can combine convergent series to form new convergent
series. Alternatively we can use the result to decompose complicated series
into simpler ones. This often helps in checking whether a series is convergent.

Example Evaluate

2− 1

3
+

5

9
− 7

27
+

17

81
− 31

243
+ ... .

Solution We first have to find a formula for the nth-term. We quickly see
that each denominator is a power of 3, starting with 1 = 30. Then there is
an alternating sign, (−1)r , if we start with r = 0. The numerators are more
difficult, but the 5, 7, 17, 31, ... should remind one of 4, 8, 16, 32, ... i.e. powers
of 2. In fact, 5 = 22 + 1, 7 = 23 − 1, 17 = 24 + 1, 31 = 25 − 1. In general,
2r + (−1)r. Combine all together to see the sum is

∞∑
r=0

1 + (−2)r

3r
.

We examine the series

∞∑
r=0

1

3r
and

∞∑
r=0

(−2)r

3r
.

If they are convergent then Theorem 4.4 tells us that our original series
is convergent. But both of these simpler series are geometric series with
λ = 1 in both cases and ratios x = 1

3
,−2

3
respectively. Since |x| < 1 in

both cases the geometric series converge as does the original series. But
Theorem 4.4 says, further, that we can add the sums of the simpler series
together to get the sum of the original series. From Theorem 4.1 the sums
are 1/(1− (1/3)) = 3/2 and 1/(1− (−2/3)) = 3/5 respectively. Hence

∞∑
r=0

1 + (−2)r

3r
=

3

2
+

3

5
=

21

10
.

�

Theorem 4.5 Let
∑∞

r=1 ar be a convergent series. Then the sequence {an}n∈N

is convergent with limit 0, that is, limn→∞ an = 0.
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Proof
Let sn be the nth partial sum of

∑∞
r=1 ar and let σ denote the sum of this

series; so {sn}n∈N has limit σ.
Define a new sequence

tn =

{
sn−1 if n > 1
0 if n = 1.

Then {tn}n∈N also has limit σ. Hence, by Corollary 3.8, {sn − tn}n∈N is

convergent with limit σ− σ = 0. But sn − tn = an, and thus limn→∞ an = 0.
�

Re-expressing Theorem 4.5 we obtain a test for divergence.

Corollary 4.6 Let
∑∞

r=0 ar be such that the sequence {an}n∈N is either

divergent or convergent with a non-zero limit then the series
∑∞

r=0 ar is
divergent.

Proof This is simply the “contrapositive” of Theorem 4.5 where, to recall,
the contrapositive of “If p then q” is “If not q then not p”. The hardest
part here is to see that the negation of “{an}n∈N converges to zero” is “either
{an}n∈N is divergent or convergent with a non-zero limit”. �

For applications see Question 3 Sheet 5

Example Let λ, x ∈ R with λ 6= 0 and |x| ≥ 1. Then the geometric series∑∞
r=0 λxr diverges.

Solution The terms of the series satisfy |λxr| ≥ |λ| , since |x| ≥ 1, and then
since λ 6= 0 we see that the terms of the sequence {λxr}r≥1 cannot converge
to 0. Thus by Corollary 4.6 the geometric series diverges. �

This is an alternative proof to Theorem 4.1(ii).

Note, as discussed in the Appendix to part 3 of the web notes, the converse
of “If p then q” is “If q then p”. The converse of Theorem 4.5 states that if
limn→∞ an = 0 then

∑∞
r=0 ar converges.

THIS IS FALSE!

There exists sequences {an}n∈N with limn→∞ an = 0 but for which
∑∞

r=0 ar

diverges. We see this easily in

Example The series
∞∑

r=1

1√
r

diverges even though limn→∞
1√
n

= 0.
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Solution. The nth partial sum satisfies

sn =
n∑

r=1

1√
r

> n× 1√
n

(numbers of terms × lower bound for the first n terms), i.e. sn >
√

n. This
means that the sequence of partial sums is unbounded and thus diverges.
Hence

∑∞
r=1

1√
r

diverges. �

See also Question 4 Sheet 5

This example is very simple but a far more important example is given
in

Theorem 4.7 The Harmonic series,
∞∑

r=1

1

r
, diverges.

Proof Rough work
The idea of the proof is

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ ...

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ ... +

1

16

)
+

+

(
1

17
+ ... +

1

32

)
+ ...

> 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+ ... +

1

16

)
+

+

(
1

32
+ ... +

1

32

)
+ ...

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+ ... .

The final series obviously diverges.
End of rough work

Step 1 For all k ≥ 1.

s2k ≥ k + 2

2
(10)
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Proof of step 1 is by induction.
When k = 1 we find that

s21 = 1 +
1

2
=

3

2
=

1 + 2

2

and so (10) holds with equality.
Assume (10) holds when k = r, so s2r ≥ (r + 2) /2. Consider

s2r+1 = s2r +
1

2r + 1
+

1

2r + 2
+

1

2r + 3
+ ... +

1

2r+1

≥ s2r + 2r × 1

2r+1

bounding the sum by the number of terms × smallest term

≥ r + 2

2
+

1

2
by inductive hypothesis

=
(r + 1) + 2

2
.

Hence result holds for k = r + 1.

Thus by induction (10) holds for all k ≥ 1.

Step 2 Show that {sn}n∈N is unbounded.

Proof of step 2 by contradiction

Assume that {sn}n∈N is bounded, by λ, say, so sn ≤ λ for all n ≥ 1.

By the alternative Archimedean Property there exists k ∈ N such that
k > 2λ− 2, i.e. k+2

2
> λ.

Then, by step 1, s2k ≥ k+2
2

> λ, so λ is not an upper bound.

Contradiction, so our assumption is false, thus {sn}n∈N is unbounded.

Finally, since the sequence of partial sums sn is unbounded it diverges and
so, by definition, the series

∑∞
r=1

1
r

also diverges. �

Remember:∑∞
r=1 ar convergent ⇒ limn→∞ an = 0,

but
limn→∞ an = 0 ;

∑∞
r=1 ar convergent
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Appendix

Theorem 4.2 Let
∑∞

r=0 ar be a series and let k ∈ N. Then
∑∞

r=0 ar is convergent if

and only if
∑∞

r=k ar is convergent. If
∑∞

r=0 ar has sum σ then
∑∞

r=k ar has a sum σ −
(a0 + ... + ak−1) .

Proof (Not for examination.)
Let sn be the nth partial sum of

∑∞
r=0 ar so sn = a0 + a1 + ... + an−1 and let tn the

nth partial sum of
∑∞

r=k ar. Thus

tn = ak + ak+1 + ... + an+k−1

= (a0 + ... + an+k−1)− (a0 + a1 + ... + ak−1)
= sn+k − (a0 + a1 + ... + ak−1) .

Now {sn} is convergent if, and only if {sn+k} converges which happens if, and only
if, sn+k − (a0 + ... + ak−1) converges (use Corollary 3.7 with bn = a0 + ... + ak−1 for all
n), i.e. if, and only if {tn} converges.

Also, the sum of
∑∞

r=k ar equals, by definition,

lim
n→∞

tn = lim
n→∞

(sn+k − (a0 + ... + ak−1))

= lim
n→∞

sn+k − (a0 + ... + ak−1)

= lim
n→∞

sn − (a0 + ... + ak−1)

= σ − (a0 + ... + ak−1).

�
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