
Section 3 Sequences and Limits, Continued.

Lemma 3.6 Let {an}n∈N be a convergent sequence for which an 6= 0 for all

n ∈ N and limit α 6= 0. Then there exists N ∈ N such that

|α|
2
≤ |an| ≤

3 |α|
2

for all n ≥ N .

In particular this result ensures that if the limit is non-zero then, for all
sufficiently large n, the an are not too close to 0.

Proof Take ε = |α| /2 > 0 in the definition that {an}n∈N has limit α. The
definition tells us that there exists N ∈ N such that

|an − α| < |α|
2

for all n ≥ N . Thus

|an| = |α− (α− an)| ≤ |α|+ |α− an| ≤
3 |α|

2

by the triangle inequality, while

|an| = |α− (α− an)| ≥ |α| − |α− an| ≥
|α|
2

by Corollary 1.2. �

If {an}n∈N and {bn}n∈N are sequences we can form a new sequence {an +

bn}n∈N whose n-th term is an + bn for all n ∈ N. Similarly we can form other,
new, sequences {anbn}n∈N and {2an − b2

n}n∈N etc.

Theorem 3.7 Let {an}n∈N and {bn}n∈N be convergent sequences with limn→∞ an

= α and limn→∞ bn = β. Then

(i) {an + bn}n∈N is convergent and limn→∞(an + bn) = α + β,

(ii) {anbn}n∈N is convergent and limn→∞(anbn) = αβ,

(iii) If an 6= 0 for all n ∈ N and α 6= 0 then
{

1
an

}
n∈N

is convergent and

limn→∞

(
1

an

)
= 1

α
.

Proof
Rough work

(i) Here we will examine |(an + bn)− (α + β)| = |(an − α) + (bn − β)| ≤
|an − α| + |bn − β| by the triangle inequality. So if we make both terms on

1



the right hand side less than ε/2 then the left hand side will be less that ε
as required.

(ii) Here we will examine

|anbn − αβ| = |anbn − αbn + αbn − αβ|
= |(an − α)bn + α(bn − β)|
≤ |bn||an − α|+ |α||bn − β|.

Again we will make both terms on the RHS less than ε/2. For this we will
have to take account of |bn| (bounded since the sequence is convergent) and
|α|.

(iii) Here we will examine∣∣∣∣ 1

an

− 1

α

∣∣∣∣ =
|α− an|
|an||α|

.

We can make the numerator, |α− an|, small but we have to make sure that
the denominator, in particular |an|, does not also get too small. This, though,
will follow from Lemma 3.6.

End of rough work.

Let ε > 0 be given.

(i) By definition, limn→∞ an = α implies that there exists N1 ∈ N such that

|an − α| < ε/2 for all n ≥ N1.

Similarly, limn→∞ bn = β implies that there exists N2 ∈ N such that

|bn − β| < ε/2 for all n ≥ N2.

Choose N = max(N1, N2). Then for n ≥ N we have, from the rough work
above,

|(an + bn)− (α + β)| ≤ |an − α|+ |bn − β|
<

ε

2
+

ε

2
= ε.

So we have verified the conditions of the definition that allow us to con-
clude limn→∞(an + bn) = α + β.

(ii) Since {bn}n∈N is convergent it is bounded (Theorem 3.2) so there exists

M > 0 such that |bn| ≤ M for all n. Further, by taking M larger if necessary
we can assume that |M | > |α| also. It is important that M is not 0.
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Then, since limn→∞ an = α we have that there exists N3 ∈ N such that

|an − α| < ε

2M
for all n ≥ N3.

Also, limn→∞ bn = β implies that there exists N4 ∈ N such that

|bn − β| < ε

2M
for all n ≥ N4.

Choose N = max(N3, N4). Then, for n ≥ N, we have, from the rough work
above,

|anbn − αβ| ≤ |bn||an − α|+ |α||bn − β|
≤ M |an − α|+ |α||bn − β|
< M

ε

2M
+ |α| ε

2M

=
ε

2
+

ε

2
, since |α| < M ,

< ε,

Hence limn→∞(anbn) = αβ.

(iii) Since α 6= 0 we can apply Lemma 3.6 to {an}n∈N to find N5 such that

|α|
2

< |an|

for all n ≥ N5. In which case∣∣∣∣ 1

an

− 1

α

∣∣∣∣ =
|α− an|
|an||α|

<
2|α− an|
|α|2

holds for all such n. Now, since limn→∞ an = α we can find N6 ∈ N such
that

|an − α| < ε|α|2

2
for all n ≥ N6.

Choose N = max (N5, N6). Then for all n ≥ N we have∣∣∣∣ 1

an

− 1

α

∣∣∣∣ <
2|α− an|
|α|2

<
2

|α|2
× ε|α|2

2
= ε.

Hence limn→∞

(
1

an

)
=

1

α
. �
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Corollary 3.8 Let {an}n∈N and {bn}n∈N be convergent sequences with limn→∞ an =

α and limn→∞ bn = β. Then

(i) For any λ ∈ R, {λan}n∈N is convergent and limn→∞(λan) = λα.

(ii) {an − bn}n∈N is convergent and limn→∞(an − bn) = α− β.

(iii) If bn 6= 0 for all n ∈ N and β 6= 0, then
{

an

bn

}
n∈N

is convergent with

limn→∞

(
an

bn

)
= α

β
.

Proof
(i) λ, λ, λ, ... is a convergent sequence with limit λ. Use Theorem 3.7(ii)

with bn = λ for all n.

(ii) By part (i) with λ = −1, if {bn}n∈N is convergent then {−bn}n∈N is
convergent. Now use Theorem 3.7(i) with {an}n∈N and {−bn}n∈N.

(iii) By Theorem 3.7(iii) limn→∞

(
1
bn

)
= 1

β
. Now use Theorem 3.7(ii)

with
{

1
bn

}
n∈N

and {an}n∈N. �

Example Find

lim
n→∞

4n3 + 3n

1− 5n3
.

Solution Rough work. For very large n the numerator “looks like” 4n3

(imagine evaluating 4n3 +3n with n = 1012 on your calculator, to the signifi-
cant figures shown on the calculator you would get the same result evaluating
4n3 with n = 1012 on your calculator). Similarly, for very large n the denom-
inator “looks like” −5n3. Hence for very large n the quotient “looks like”
4n3/(−5n3) = −4/5. So we might guess that the limit is −4/5.

Next, we might try to use Corollary 3.8(iii) to prove this. Our first
attempt might be to say

lim
n→∞

4n3 + 3n

1− 5n3
=

lim
n→∞

(4n3 + 3n)

lim
n→∞

(1− 5n3)
.

But we would be wrong. This is because Corollary 3.8(iii) says that

“if the two sequences in the quotient converge individually

then the limit of the quotient is the same as the quotient of the limits”.

In our case the two sequences are {4n3 + 3n}n∈N and {1− 5n3}n∈N , neither
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of which converge. So, before an application of Corollary 3.8 we have to
“change” these two sequences into ones that converge. The usual way is
to divide the top and bottom of the quotient by the largest power of n in
the bottom term (denominator). In the case, this means dividing top and
bottom by n3 to get sequences {4 + 3/n2}n∈N and {1/n3 − 5}n∈N , both of
which converge.

End of rough work.

From an earlier example we know that limn→∞
1
n

= 0. We will use this
fact as follows.

lim
n→∞

4n3 + 3n

1− 5n3
= lim

n→∞

4 + 3
n2

1
n3 − 5

(
The idea is to get terms on top and
bottom that have finite limits,

)

=
lim

n→∞

(
4 + 3

n2

)
lim

n→∞

(
1
n3 − 5

) (Corollary 3.8(iii))

=
lim

n→∞
4 + lim

n→∞

(
3
n2

)
lim

n→∞

(
1
n3

)
− lim

n→∞
5

(Theorem 3.7 and Corollary 3.8)

=
4 + 3

(
lim

n→∞
1
n

)2

(
lim

n→∞
1
n

)3

− 5
(Corollary 3.8(iii))

=
4

−5
= −4

5
.

�

See also Question 8 Sheet 3

Example Let {an}n∈N be the sequence defined recursively by a1 = 0, and
an+1 = 1

4
(an + 1) for all n ∈ N.

Show that this sequence is convergent and find its limit.

Solution Rough work. The first few terms are 0, 1
4
, 5

16
, 21

64
, 85

256
, ... . Looking

at these we might guess that the sequence is increasing since

0 <
1

4
=

4

16
<

5

16
=

20

64
<

21

64
=

84

256
<

85

256
... .

We might also guess that the sequence is bounded above by 1, simply
because the numerator of each term is smaller than the denominator. Hence
we should be thinking of using Theorem 3.4.
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End of Rough work

(i) We will show by induction that an ≤ an+1 ≤ 1 holds for all n ≥ 1.

If n = 1 then a1 = 0 and a2 = 1
4

in which case a1 ≤ a2 ≤ 1 holds as
required.

Assume true for n = k, so we are assuming that ak ≤ ak+1 ≤ 1 holds.
(We hope to show that ak+1 ≤ ak+2 ≤ 1 holds.)
Then

ak ≤ ak+1 ≤ 1, by assumption,

ak + 1 ≤ ak+1 + 1 ≤ 1 + 1 adding 1 to each term,

1
4
(ak + 1) ≤ 1

4
(ak+1 + 1) ≤ 2

4
dividing each term by 4,

ak+1 ≤ ak+2 ≤ 1
2

< 1 by the inductive definition of the sequence.

So, ak+1 ≤ ak+2 ≤ 1, i.e. the result is true for n = k + 1.

Thus, by induction, an ≤ an+1 ≤ 1 for all n ≥ 1.

So, {an}n∈N is increasing (since an ≤ an+1 for all n ≥ 1) and bounded

above by 1 (since an ≤ 1 for all n ≥ 1). Hence, by Theorem 3.4, {an}n∈N
converges, with limit α, say.

(ii) To find α we note that the sequences 0, 1
4
, 5

16
, 21

64
, ... and 1

4
, 5

16
, 21

64
, ... have

the same limit, i.e. both {an}n≥1 and {an+1}n∈N =
{

1
4
(an + 1)

}
n∈N have the

same limit. Hence

α = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1

4
(an + 1)

=
1

4

(
lim

n→∞
an

)
+

1

4
by Theorem 3.7 and Corollary 3.8,

=
α

4
+

1

4
.

From this we see that α = 1/3 as given in the theorem. �

Note In this problem we had to choose a number λ and then check that
an ≤ λ for all n ≥ 1. Here we chose λ = 1. How do we find λ? We should
do some rough work first, assume that the limit exists and run through the
argument in part (ii) above to find α = 1/3. We choose any λ ≥ 1/3, usually
a simply value such, as in this case, 1.

See also Questions 9 and 10 Sheet 3
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In the proof of theorem 3.10 we will make use of the following result.

Lemma 3.9 (Bernoulli’s inequality.)

For all δ ≥ −1 and all n ≥ 1 we have (1 + δ)n ≥ 1 + nδ.

Proof by induction on n.

If n = 1 then we get equality.

Assume true for n = k, so (1 + δ)k ≥ 1 + kδ. (We now try to show that
(1 + δ)k+1 ≥ 1 + (k + 1)δ holds.)

Consider

(1 + δ)k+1 = (1 + δ)(1 + δ)k

≥ (1 + δ)(1 + kδ) by inductive assumption and 1 + δ ≥ 0,

= 1 + δ + kδ + kδ2

> 1 + (k + 1)δ, dropping the kδ2 ≥ 0 term.

Thus the result holds for n = k + 1.
Hence, by induction, (1 + δ)n ≥ 1 + nδ for all n ≥ 1. �

See also Question 8 Sheet 4
Theorem 3.10

(i) For a fixed integer k,

if k < 0, then {nk}n∈N is convergent and limn→∞ nk = 0,

if k = 0, then {nk}n∈N is convergent and limn→∞ nk = 1,

if k > 0, then {nk}n∈N is divergent.

(ii) For a fixed real number x,

if |x| < 1, then {xn}n∈N is convergent and limn→∞ xn = 0,

if x = 1, then {xn}n∈N is convergent and limn→∞ xn = 1,

if x = −1 or |x| > 1, then {xn}n∈N is divergent.

Proof
(i) (Left to student.)

(ii) Suppose |x| < 1. Let ε > 0 be given.
If x = 0 then the result is clear. So suppose 0 < |x| < 1. In this case we

use a TRICK and look at
1

|x|
which satisfies

1

|x|
> 1. Write

1

|x|
= 1 + δ with

δ > 0.

By the Archimedean property we can find N ∈ N with 1
N

< δε. Then,
for all n ≥ N,
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|xn − 0| = |x|n =
1

(1 + δ)n
≤ 1

1 + nδ
, by Lemma 3.9,

<
1

nδ
≤ 1

Nδ
<

δε

δ
= ε.

Therefore limn→∞ xn = 0.

Suppose x = 1 then xn = 1 for all n and limn→∞ xn = 1 is immediate.

Suppose x = −1 then the sequence is −1, 1,−1, 1,−1, 1, ... which alter-
nates and does not converge, i.e. it diverges.

Suppose |x| > 1. Write |x| = 1 + δ with δ > 0. Let λ > 0 be given. By
the Alternative Archimedean property, Theorem 2.1´, we can find N ∈ N
with N > λ/δ. Then

∣∣xN
∣∣ = (1 + δ)N ≥ 1 + Nδ by Lemma 3.9,

≥ Nδ >
λ

δ
δ = λ.

Thus λ is not an upper bound for the sequence {xn}n∈N. But λ was arbitrary

so there is no upper bound for {xn}n∈N, i.e. the sequence is unbounded.
Therefore, by Corollary 3.3, the sequence is divergent. �

Theorem 3.11 (Sandwich Rule) Let {bn}n∈N, {cn}n∈N be convergent se-

quences with the same limit ` and bn ≤ cn for all n ∈ N. Suppose {an}n∈N
satisfies

bn ≤ an ≤ cn for all n ∈ N.

Then {an}n∈N is convergent with limit `.

Proof
Let ε > 0 be given.
Since{bn}n∈N is convergent with limit ` there exists N1 ∈ N such that

|bn − `| ≤ ε for all n ≥ N1. This means `− ε < bn < ` + ε. In particular,

`− ε < bn (1)

for all n ≥ N1.

Since{cn}n∈N is convergent with limit ` there exists N2 ∈ N such that

|cn − `| ≤ ε for all n ≥ N2. In particular,

cn < ` + ε (2)
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for all n ≥ N2.
Let N = max (N1, N2). Then for all n ≥ N both (1) and (2) hold and so

`− ε < bn ≤ an ≤ cn < ` + ε.

Thus |an − `| < ε for all n ≥ N as required. �.

Example Show that

lim
n→∞

cos
(

π
4
n2

)
n2

= 0.

Solution For all n ≥ 1 we have

−1 ≤ cos
(π

4
n2

)
≤ 1

and so

− 1

n2
≤

cos
(

π
4
n2

)
n2

≤ 1

n2
.

Thus the terms of our sequence are “sandwiched” by the sequences − 1
n2 and

1
n2 both of which have limit 0. Hence, Theorem 3.11 gives the result. �

See also Question 1 Sheet 4

Note We might try to use Theorem 3.7(ii) and say

lim
n→∞

cos n

n2
= lim

n→∞

(
1

n2

)
lim

n→∞

(
cos

(π

4
n2

))
= 0× lim

n→∞

(
cos

(π

4
n2

))
= 0.

But we would be wrong! This is because Theorem 3.7(ii) says that

“if the two sequences in the product converge individually

then the limit of the product is the product of the limits”.

In our case the two sequences are {1/n2}n∈N and
{
cos

(
π
4
n2

)}
n∈N, the second

of which does not converge. Thus we cannot apply Theorem 3.7.

Example Show that

lim
n→∞

n + (−1)n

n− (−1)n = 1.
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Solution For all n ≥ 2 we have

n− 1

n + 1
≤ n + (−1)n

n− (−1)n ≤ n + 1

n− 1
.

So the terms of our sequence are “sandwiched” by the sequences 1−1/n
1+1/n

and 1+1/n
1−1/n

both of which have limit 1. Hence, Theorem 3.11 gives the result.�

Appendix

Theorem 3.10

(i) For a fixed integer k,

if k < 0, then {nk} is convergent and limn→∞ nk = 0,

if k = 0, then {nk} is convergent and limn→∞ nk = 1,

if k > 0, then {nk} is divergent.

Proof (Not for examination.)
(i) Suppose k < 0. Let ε > 0 be given.
By the Archimedean property we can find N ∈ N with 1

N < ε.
Since k < 0 and k ∈ Z we must, in fact, have k ≤ −1 and thus nk ≤ n−1 for all n ≥ 1.

Hence, for any n ≥ N we have

|nk − 0| = nk ≤ 1
n
≤ 1

N
< ε.

Therefore limn→∞ nk = 0.

If k = 0 then nk = n0 = 1 for all n ≥ 1 and so limn→∞ nk = 1.

Suppose k > 0. Let λ > 0 be given.

By the Alternative Archimedean property, Theorem 2.1´, we can find N ∈ N with
N > λ.

Since k > 0 and k ∈ Z we must, in fact, have k ≥ 1 in which case Nk ≥ N > λ.
Thus λ is not an upper bound for {nk}. But λ was arbitrary so there is no upper bound
for {nk}, i.e. the sequence is unbounded. Therefore, by Corollary 3.3, the sequence is
divergent. �

Sufficiently large.
We say that a property, p (n), that depends on a natural number n, holds for all

sufficiently large n, if there exists N ∈ N such that p (n) holds for all n ≥ N .

There are “sufficiently large” variants of most of our results. For instance I leave it to
the student to give a proof of the following: Let {bn}n∈N, {cn}n∈N be convergent sequences

with the same limit `. Suppose {an}n∈N satisfies bn ≤ an ≤ cn for all sufficiently large n

then {an}n∈N is convergent with limit `.
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