
Section 2 Bounds

Definitions Let A ⊆ R be a set of real numbers. A real number λ is said to
be a lower bound (written as lbA) for A if

∀a ∈ A, λ ≤ a.

A real number µ is said to be an upper bound (written as ubA) for A if

∀a ∈ A, a ≤ µ.

Note, we do not insist that either λ or µ be in A.

If A has a lower bound then we say that A is bounded below (denoted
by bdd).

If A has an upper bound then we say that A is bounded above (denoted
by bdd).

If A is both bounded above and below then we say that A is bounded
(denoted by bdd).

If A is not bounded then we say that A is unbounded.

Examples Discuss whether the following set are bdd, bdd, bdd or unbounded.

(i) A = {−2,−1, 1
2
}.

This set is bounded above, by 15 say, and bounded below, by −8 say. So
this set is bdd. In fact it is bounded below by every real number λ ≤ −2 and
from above by every real number µ ≥ 1

2
.

(ii) A = (−∞,
√

2).

This set is bounded above by every real number µ ≥
√

2 and so is bdd.
But the set is not bounded below so it is not bdd and so the set is unbounded.

(iii) A =
{

1
2
, 3

2
, 5

2
, 7

2
, 9

2
, ...

}
.

This set is bounded below by every real number λ ≤ 1
2
. The set is not

bounded above. Hence A is bdd and unbounded.

If a set A has a lower bound λ, then every λ
′ ≤ λ is also a lower bound

for A. To see this, let a ∈ A be given. Since λ is a lower bound for A we have
λ ≤ a. We are also told that λ

′ ≤ λ. So, by Property 9 of R, Transitivity,
we have λ

′ ≤ a. True for all a ∈ A means that λ
′
is a lower bound for A.

Similarly, if a set A has an upper bound µ then every µ′ ≥ µ is also an
upper bound for A.

This leads us to consider the set of all possible lower bounds for a set A
and the set of all possible upper bounds..
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Definition Let A ⊆ R. A real number α is said to be the greatest lower
bound for A (denoted by glbA) if, and only if

(i) α is a lower bound for A,
(ii) α ≥ λ for every lower bound λ of A.

(Think about glb as the “greatest of all possible lower bounds”. Some-
times glbA is written as inf A for the infimum of A.)

Note For the use of the phrase “if, and only if” see the appendix.

Definition Let A ⊆ R. A real number β is called the least upper bound
(lubA) for A, if, and only if,

(i) β is an upper bound for A,
(ii) β ≤ µ for every upper bound µ of A.

(Think about lub as the “least of all possible upper bounds”. Sometimes
lubA is written as sup A for the supremum of A.)

Examples Find the glb and lub, if they exist, of the following sets.

(1) A =
{
−2,−1, 1

2

}
.

We might guess that −2 is the greatest lower bound of A. To check that
this is so we have to verify the definition with α = −2.

(i) Noting that −2 ≤ −2,−2 ≤ −1 and −2 ≤ 1
2

we see that −2 is a lower

bound for A. So part (i) of the definition is satisfied.

(ii) Given, now, any other lower bound λ of the set, this λ must be less
than or equal every element in A. One such element is −2 so we must have
λ ≤ −2. If we write this as −2 ≥ λ we see that part (ii) of the definition
is satisfied, i.e. that −2 is greater than or equal to all other lower bounds.
Hence −2 = glbA.

Note In this example the glb is an element of the set. This meant the
verification of −2 as the glb is quite simple.

Similarly 1
2

is quickly seen to be an upper bound. Given any other upper
bound µ this must be greater than or equal the element 1

2
from the set. In

other words 1
2
≤ µ. Again we have shown that both parts of the definition

are satisfied with β = 1
2

and so 1
2

= lubA. �

(2) A = (−∞,
√

2) =
{
x ∈ R : x <

√
2
}

.

In this case there is no lower bound to the set so no greatest lower bound.

We might guess that
√

2 is the least upper bound for the set. So again
we verify the definition of lub with β =

√
2.
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(i) Given any a ∈ A then by the definition of A we have a <
√

2. Turning
this around we have

√
2 > a for all a ∈ A which simply says that

√
2 is an

upper bound for A.

(ii) In this example
√

2 /∈ A and so the verification of the definition is not
as simple as it was in the last example.

Assume for contradiction that it is not true that “for every upper bound
µ of A we have.

√
2 ≤ µ”. This means that there exists at least one upper

bound µ0 say, with µ0 <
√

2. Consider ξ = (µ0 +
√

2)/2, the average of µ0

and
√

2. Then µ0 < ξ <
√

2. There are two bits of information here. Firstly
ξ <

√
2 which implies ξ ∈ A by the definition of A. Secondly µ0 < ξ. But

combining this with ξ ∈ A we conclude that µ0 is not an upper bound for
A. This contradicts the definition of µ0 as an upper bound for A. So our
assumption is false and thus

√
2 ≤ µ for every upper bound µ of A

Thus we have verified both parts (i) and (ii) of the definition of lub with
β =

√
2. �

(3) A =
{

1
2
, 3

2
, 5

2
, 7

2
, 9

2
, ...

}
.

This set has no upper bound and so no least upper bound. As in example
(1) you can show that glbA = 1

2
. �

Note that Example (2) illustrates the point that lubA (and glbA) do not
necessarily belong to A. In general, if the lub or glb is not in the set, it
is harder to verify the definition. The verification is often best done by
contradiction, as above.

We can now provide the missing property 10 concerning R:

Property 10 (Completeness) Every non-empty subset of R which is
bounded above has a least upper bound; and every non-empty subset of
R which is bounded below has a greatest lower bound.

Note: This property should really read: Every non-empty set of real numbers
which is bounded above by a real number has a least upper bound that is
a real number ; and every non-empty set of real numbers which is bounded
below by a real number has a greatest lower bound that is a real number.

So if we ask whether this property holds for Q, say, we are asking the
following. Is it true that every non-empty set of rational numbers which
is bounded above by a rational number has a least upper bound that is
a rational number ; and every non-empty set of rational numbers which is
bounded below by a rational number has a greatest lower bound that is a
rational number?

The answer is no, and so Property 10 does not hold in Q, unlike all the
other Properties 1− 9.
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Consider {x ∈ Q : x2 < 2} . This set is bounded above by 2 ∈ Q, for
example, but in the following result it is seen that it has no least upper
bound in Q (it does have one in R, as it should by property 10, namely

√
2,

but
√

2 /∈ Q).

Theorem The least of all rational upper bounds of {x ∈ Q : x2 < 2} is not
rational.

Proof (This result is not given in the lectures, it will not be examined but
is given at the end of this section for the sake of your education.)

The following result is often useful when we wish to prove that a given
number is the lub or glb of a set.

Theorem 2.1 (Archimedean property of R)

∀ε > 0,∃n ∈ N :
1

n
< ε.

Proof
Let

A =

{
1

n
: n ∈ N

}
=

{
1,

1

2
,
1

3
,
1

4
, ...

}
.

Since 0 < 1
n

for all n ∈ N we see that 0 is a lower bound for A.

Then, by Property 10, A has a glb which we can call α.

Claim: α = 0.

Proof of claim. (TRICK)
Since 0 is a lower bound for A and α is the greatest of all such lower

bounds we must have α ≥ 0.
Now

1
2n
∈ A ∀ n ∈ N,

so α ≤ 1
2n

∀ n ∈ N, since α is a lower bound for A,

and thus 2α ≤ 1
n

∀ n ∈ N, on multiplying through by 2.

This means that 2α is a lower bound for A. Yet, again, α is the greatest
of all lower bounds so we must have α ≥ 2α. Subtracting α from both sides
gives α ≤ 0.

Thus we have both α ≥ 0 and α ≤ 0. Hence α = 0. �

Finally, let ε > 0 be given. Since 0 = glbA, we have ε > glbA. Thus ε is
not a lower bound for A and we can find an element of A lower than ε, i.e.
there exists n ∈ N such that 1

n
< ε. �
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Theorem 2.1´ (Alternative Archimedean property)

Given any real number K > 0 there exists n ∈ N such that n > K.

Proof Given any K > 0 set ε = 1
K

> 0 and apply Theorem 2.1 to find n ∈ N
with 1

n
< ε = 1

K
. In this way we find n ∈ N with n > K. �

In particular this shows that N is not bounded above.

Our definitions of glb and lub can be difficult to apply in practice. Because
of this we have alternative forms:

Recall that if the lub is not in the set, the verification of the definition
could be quite involved. In verifying the following conditions in place of those
of the definition, we often avoid the proof by contradiction seen before.

Theorem 2.2 A real number β is the lubA if and only if

(a) β is an upper bound of A

(b) for every ε > 0 there exists a ∈ A such that β − ε < a (≤ β) i.e.

∀ε > 0,∃a ∈ A : β − ε < a.

(So (b) says that for every ε > 0, β − ε is not an upper bound for A, as we
would expect if β is the least of all upper bounds.)

Proof
We need to show that

(a) , (b) hold ⇔ (i) , (ii) hold.

Yet (a) and (i) are identical. So it suffices to assume that β is an upper
bound and show that

(b) holds ⇔ (ii) holds.

(⇐) Assume that the upper bound β satisfies part (ii) of the definition, i.e.
β ≤ µ for every upper bound µ of A.

Let ε > 0 be given. Trivially β − ε < β and so, by the assumption, β − ε
cannot be one of the upper bounds, µ, for A. This means that there exists
a ∈ A such that β − ε < a, as required for part (b) of the Theorem.

(⇒) Conversely, assume that the upper bound β satisfies part (b) of the
Theorem, i.e. for every ε > 0 there exists a ∈ A such that β − ε < a.

Assume for a contradiction that β does not satisfy part (ii) of the Theo-
rem. So there exists at least one upper bound µ0 of A for which µ0 < β. Set
ε = β − µ0 > 0. Since β satisfies part (b) of the Theorem there exists a ∈ A
such that β − ε < a. But this will give us
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µ0 ≥ a since µ0 an upper bound for A,

> β − ε

= β − (β − µ0) by our choice of ε,

= µ0.

That is, µ0 > µ0. This is a contradiction so our last assumption above is
false, i.e. β satisfies part (ii) of the Theorem. �

Theorem 2.3 A real number α is the glbA if and only if

(a) α is a lower bound of A
(b) for every ε > 0 there exists a ∈ A such that (α ≤) a < α + ε, i.e.

∀ε > 0,∃a ∈ A : a < α + ε.

(This time (b) says that for every ε > 0, α + ε is not a lower bound for A.)

Proof
Similar to that of Theorem 2.2 and left to the student. �

Example Show that 1 is the least upper bound of

A =

{
2n − 1

2n
: n ∈ N

}
.

Solution
We will try to verify parts (a) and (b) of Theorem 2.2.

First, Rough work.

A =

{
1

2
,
3

4
,
7

8
,
15

16
, ...

}
,

so we might guess that lubA = 1. To prove this we will try to use Theorem
2.2. So we need to show that parts (a) and (b) of Theorem 2.2 are satisfied
when β = 1.

So we will need (a) 2n−1
2n ≤ 1 for all n, i.e. 2n − 1 ≤ 2n.

Also (b), given ε > 0 we need to find n such that 1− ε < 2n−1
2n = 1− 1

2n ,

i.e. 1
2n < ε. But, by the Archimedean Property we can find an n such that

1
n

< ε which, along with n < 2n gives 1
2n < ε.

End of rough work.

Note. This is not a proof. We have started with what we want to prove and
in both cases (a) and (b) ended with true results. In a proof we start with
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true results and end with what we want to prove. But this rough working
has, at least, shown us what true results we should start with.

Proof
(a) For all n ∈ N, we trivially have 2n − 1 < 2n and so 2n−1

2n < 1 for all

such n. Thus 1 is an upper bound for A.

(b) Let ε > 0 be given. By the Archimedean Property we can find an
n ∈ N such that 1

n
< ε. As n < 2n for all n ≥ 1 (a proof can be given by

induction) we find that

1

2n
<

1

n
< ε

or − ε < − 1

2n

i.e. 1− ε < 1− 1

2n
=

2n − 1

2n
.

That is, we have found an element of the set A greater than 1− ε.

So both parts (a) and (b) of Theorem 2.2 are satisfied with β = 1 and,
thus, 1 = lubA. �

Appendix Q is not Complete.

Imagine we are in a “Universe” containing only rational numbers. Define A = {x ∈ Q :
x2 < 2} ⊆ Q. Note how A is defined only using rational numbers, namely 2; we
have not defined it as

{
x ∈ Q : x <

√
2
}
. Possible rational upper bounds for A are

1.5,1.42,1.415,1.4143,1.41422,..., (found by rounding up truncations of the decimal ex-
pansion for

√
2). The question is then what can be said of the upper bound of A that is

less than or equal to all the rational upper bounds.

Theorem The least of all the rational upper bounds of
{
x ∈ Q : x2 < 2

}
is not rational.

Proof (This result is not given in the lectures, it will not be examined and is included here
just for interest.)

Assume that the least of all rational upper bounds of
{
x ∈ Q : x2 < 2

}
is rational and

denote it by α.

Then by Property 6 of the real numbers we have that exactly one of α2 < 2, α2 = 2
or α2 > 2 holds.

We are assuming that α is rational and we know that x2 = 2 has no rational solution
so α2 = 2 is not possible.

Thus we have either α2 < 2 or α2 > 2.

Case 1 α2 < 2.
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From Question 7(iv) of Problem Sheet 1 we know that we can find a rational β ∈ Q

such that α2 < β2 < 2. Firstly, β2 < 2 along with β ∈ Q means β ∈
{
x ∈ Q : x2 < 2

}
.

But then α2 < β2, that is α < β, means that the upper bound α is less than some element
of

{
x ∈ Q : x2 < 2

}
, a contradiction.

Case 2 α2 > 2.

As above we can find a rational γ ∈ Q such that α2 > γ2 > 2. Firstly, given any
z ∈

{
x ∈ Q : x2 < 2

}
we have z2 < 2 and so z2 < 2 < γ2, or z < γ. True for all z from

the set means that γ is a rational upper bound for
{
x ∈ Q : x2 < 2

}
. This, along with the

fact that α > γ contradicts the fact that α is the least of all rational upper bounds.

So in each case we are led to either an impossibility or a contradiction, therefore the
original assumption is false. Hence result. �

You could say that there is something “missing” from Q; when we look for the least
of all rational upper bounds for A we cannot find it in Q. Thus it seems reasonable to say
that Q is not complete.

Logic

Use of the phrase “if, and only if”: Let p and q be two propositions. Propositions are
sentences that propose a fact or facts and to which you can give a truth value of either
True or False. Examples of propositions are “e is the fifth letter of the alphabet”,“Gordon
Brown is Prime Minister”, “5 + 7 = 11”. The “Calculus of Propositions” studies the
question of assigning truth values to compound propositions when we know the truth
values of the basic propositions. Given propositions p and q the immediate compounds
that can be made are “p does not hold”, “p and q”, “p or q” and “if p then q”. These are
symbolised respectively as “¬p”, “p∧ q”,“p∨ q” and “p ⇒ q”. All I’ll mention here is that
we say that p ⇒ q is False only when p is True and q is False (we never want something
false to follow from something true). In all other (three) cases p ⇒ q is True. In English
we have other expressions often used in place of “if p then q”, such as “q if p” and “ p only
if q”. We say that the compounds “q if p”, “p only if q” and “if p then q” are logically
equivalent in that whatever truth values are given to p and q these compound sentences
have the same truth values.

We can obviously compound already compounded propositions. The compound (q ⇒ p)
∧ (p ⇒ q) occurs so frequently it is given a symbol p ⇔ q. Using the equivalences above
p ⇔ q can be written in English as “(p if q) and (p only if q) ”. This is shortened to “p

if, and only if, q”. And on the blackboard I shorten it even further to “p iff q”. Finally,
p ⇔ q has the truth value True if p and q have the same truth values, i.e. both True or
both False, while it is False if p and q have different truth values.

Consider now an example with a Universal set U = R and sentence 2+x = 5. If x = 3
we get a true sentence, while for any x 6= 3 we get false sentences. So whatever value from
the Universe is substituted for the variable x we get a proposition. We say that, with
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U = R, 2 + x = 5 is a predicate. To show its dependence on x we might represent it as
p (x).

How to write the definition of glb of a set A ⊆ R in terms of predicates? We first
have to find the Universe. The variables will be real numbers α and sets A ⊆ R. So the
Universe for the definition will be taken as the set of all ordered pairs, R × P (R), where
P (R) is the collection of all subsets of R. For predicates we take p(α, A) to be “the real
number α is the glbA” while for q (α, A) we take “Parts (i) and (ii) of the definition hold
for α and A.” Then the definition is written as “p(α, A) if, and only if, q (α, A)”.

For all α ∈ R, A ⊆ R, p(α, A) if, and only if, q (α, A)

As we saw above, this represents

“(∀α ∈ R, A ⊆ R, p(α, A) ⇒ q (α, A)) ∧ (∀α ∈ R, A ⊆ R, q (α, A) ⇒ p(α, A)).

So the statement of the definition means two things. If we are told that a real number
α = glbA then we know that parts (i) and (ii) hold. This is how the definition is used in
the first part of the proof of Theorem 2.2, say. On the other hand, if we are told, or can
verify, that α and A satisfy parts (i) and (ii) of the definition then we can say α = glbA.
This is how the definition is used in the example above that −2 = glb{−2,−1, 1

2}.

Note how not only definitions are written as “if, and only if statements”, but so are
some theorems, such as 2.2 above. With the same Universe as for the definition of glb let
r (β, A) be the predicate that “β and A satisfy parts (i) and (ii) of Theorem 2.2”. Then
Theorem 2.2 can be written as

“For all β ∈ R, A ⊆ R, p(β, A) if, and only if, r (β, A) ”.

This represents

“ ((∀β ∈ R, A ⊆ R, p(β, A) ⇒ r (β, A)) ∧ ((∀β ∈ R, A ⊆ R, r (β, A) ⇒ p(β, A)) .

So to prove the Theorem we have to show that both ∀β ∈ R, A ⊆ R, p(β, A) ⇒ r (β, A)
and ∀β ∈ R, A ⊆ R, r (β, A) ⇒ p(β, A) are true, which requires two proofs, just as we saw
in the proof of Theorem 2.2.
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