
153 Additional Questions

Last updated 17/01/05

The majority of the questions below build on and develop further some
of the questions given on the Question Sheets. There is no solution sheet
though any numerical values that are asked for are listed at the end and
(hopefully a sufficient number of) hints are given.

1) Let α, β ∈ A be real roots of x2 − 2 = 0 and x3 − 3 = 0 respectively.

(i) Find an equation with rational coefficients satisfied by α + β.
Hence show that α + β ∈ A.

(ii) Prove that αβ ∈ A.

Aside: It can be shown that if α and β are any elements of A then both
α + β, αβ ∈ A. Further, if α ∈ A \ {0} then α−1 ∈ A. So A forms a field, i.e.
satisfies the same Properties 1-5 as does R.

2) (a) Show that
3
√

3 2
√

21 + 8 is irrational.

(b) What about
3
√

3 2
√

21− 8?

(c) On a calculator evaluate each of the following

(i)
3
√

3 2
√

21 + 8− 3
√

3 2
√

21− 8,

(ii)
3
√

20− 14 2
√

2 +
3
√

20 + 14 2
√

2,

(iii)
3
√

2 2
√

13 + 5− 3
√

2 2
√

13− 5.

In each case the expression can be simplified in the following way.

(1) Find the cubic equation that the expression satisfies. To this end it
might help to first show, by substitution perhaps, that if x is of the form
3
√

α− 3
√

β then x satisfies

x3 + 3 3
√

αβx− (α− β) = 0.

(2) For each of the three cubic equations you have derived find a real,
integer, root. (The calculation made in (c) should help here).

(3) Factor each of the three cubics into a product of a linear and a
quadratic factor.

(4) Show that in each case the quadratic factor has no real roots. (For
this you need to look at the discriminant. For a quadratic ax2 + bx + c the
discriminant is b2 − 4ac. Where have you seen this before?)
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(5) Conclude that each of the original numbers must equal the only real
root of the corresponding cubic, a root that is an integer!

(6) Try to construct some examples of your own, i.e. try to find conditions
on a, b and c ∈ N such that

3

√
a

2
√

b + c− 3

√
a

2
√

b− c ∈ N.

(d) In the same way show that

3

√
2
√

5 + 2 +
3

√
2
√

5− 2 =
2
√

5.

(e) Further, find simpler expressions for

(i)
4
√

28 + 8 2
√

12− 4
√

28− 8 2
√

12,

(ii)
4
√

196 + 16 2
√

150− 4
√

196− 16 2
√

150.

To prove your result you should follow the above method, though this
time you start by finding a quartic equation the number satisfies. To this
end it might help to first show that if x is of the form 4

√
γ− 4

√
δ then x satisfies

x4 + 4 4
√

γδx2 −
(

2
√

γ − 2
√

δ
)2

= 0.

3) Find all zeros of x4 − 4x2 + x + 2 = 0.

Hint: Look first for the rational zeros by writing

x4 − 4x2 + x + 2 = (x− p)
(
x3 + ax2 + bx + c

)
where p ∈ Z. (So why must p divide 2?). When the rational zeros have been
found use them to factorize x4−4x2 +x+2. You should then be able to find
the zeros of any non-linear factor.

4) Which of the Properties 1-5 are satisfied by

(i) the set of all 2× 2 matrices with real entries,

(ii) the set of all 2× 2 matrices with real entries and determinant 1,

(iii) the set of all subsets of R, with ∪ in place of + and ∩ in place
of ×.

If a property fails to hold, give a counter-example.
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5) Define <C on C as follows: for all z, w ∈ C set z <C w if either |z| < |w|
or we have both |z| = |w| and arg z < arg w.

Which of the properties 6-9 hold for <C?

If a property fails to hold, give a counter-example.

6) Let α ∈ R. Is

lub {x < α : x ∈ R} = lub {x < α : x ∈ Q}?
lub {x < α : x ∈ R} = lub {x < α : x ∈ Z}?
lub {x < α : x ∈ Q} = lub {x < α : x ∈ Z}?

7) Is A complete?

Hint: Think of a number, γ, not in A, (you may have to take it on trust
that it is not in A). Find an increasing sequence of rationals (which are thus
in A) converging to γ. So r1 < r2 < r3 < ... with limn→∞ rn = γ. Consider
R = ∪n≥1 {x ∈ A : x < rn}. What can you say of lubR?

8)(i) Recall

a− b =
(√

a−
√

b
)(√

a +
√

b
)

is valid for all a, b ≥ 0.

Let {an}n∈N be a convergent sequence of positive terms, so an > 0 for all
n ≥ 1, with limit ` > 0.

Prove that ∣∣∣√an −
√

`
∣∣∣ < |an − `|√

`
.

(ii) Deduce, using the Archimedean Principle, that

lim
n→∞

√
an =

√
`.

Can you prove this result when ` = 0?

9) Calculate the limit of the sequence{
(−1)n

√
n + (−1)n + (−1)n+1

√
n + (−1)n+1

}
n∈N

10) Evaluate

lim
n→∞

√
n + 1 +

√
n− 1√

n + 2 +
√

n + 1
.
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11) (i) Let a, b, c, d > 0. What is the value of

lim
n→∞

(√
n + a

√
n + b−

√
n + c

√
n + d

)
?

(ii) Use (a2 − ab + b2)(a + b) = a3 + b3 to prove

n

(n + 1)1/3
≤ (n− 1)2/3 −

(
n2 − 1

)1/3
+ (n + 1)2/3 ≤ n

(n− 1)1/3

for all n ≥ 2. Hence evaluate

lim
n→∞

(
(n− 1)2/3 − (n2 − 1)

1/3
+ (n + 1)2/3

n2/3

)
.

12) Note: The inequality in Question 8(i) of Sheet 4 can be deduced from
the binomial expansion. The binomial expansion states that for n ∈ N we
have

(1 + δ)n =
n∑

j=0

(
n

j

)
δj where

(
n

j

)
=

n!

j! (n− j)!

is the binomial coefficient. If we assume that δ > 0 then, when we truncate
the series at j = 2, we throw away positive terms and get as a lower bound
the inequality in Question 8(i) of Sheet 4. Importantly, in Bernoulli’s Lemma
we have δ > −1, i.e. the possibility of negative δ.

i) Assume k, n ∈ N satisfy 1 ≤ k ≤ n. Prove that

(1 + δ)n >
n!

k! (n− k)!
δk

for all δ > 0.

ii) Justify

n!

(n− k)!
≥ 2

(n

2

)k

for n ≥ 2 (k + 1) .

iii) Assume |x| < 1. Prove that, given any ` ∈ N,

∣∣n`xn − 0
∣∣ < 2` (` + 1)!

nδ`+1

for n ≥ 2 (` + 2) , where 1 + δ = 1/x. Deduce that limn→∞ n`xn = 0.
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13) Recall

(1 + δ)n ≥ 1 + nδ +
n (n− 1)

2
δ2 (1)

holds for all n ≥ 1.

(i) Let n ≥ 1 be given. Write n1/n = 1 + δ so n = (1 + δ)n. Apply (1) to
show

n >
n (n− 1)

2
δ2.

(ii) Deduce that

∣∣n1/n − 1
∣∣ <√ 2

n− 1
for n ≥ 2.

(iii) Conclude that

lim
n→∞

n1/n = 1.

14) Justify the following steps: For r ∈ N,(
1 +

1

r2

)−r

=

(
1− 1

r2 + 1

)r

≥ 1− r

r2 + 1
.

Thus

1 <

(
1 +

1

r2

)r

≤ 1 +
r

r2 − r + 1
.

Hence

lim
r→1

(
1 +

1

r2

)r

= 1.

15) Assume that {an}n∈N is a sequence of non-zero terms, so an 6= 0 for all
n ∈ N. Further, assume that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = λ

exists. Prove

(i) If λ < 1 then {an}n∈N converges with limit 0,

(ii) If λ > 1 then {an}n∈N diverges.
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Hence, for any fixed k, ` ∈ N, ` ≥ 2, show that

lim
n→∞

nk

`n
= 0.

16) (i) What is the smallest n0 ∈ N for which 2n ≤ (n− 1)! holds?

(ii) Prove that

2n ≤ (n− 1)! for all n ≥ n0.

(iii) Deduce

lim
n→∞

2n

n!
cos
(πn

8

)
= 0.

17) Define {bn}n∈N iteratively by b1 = 1 and

bn+1 = 1 +
1

bn + 1

for all n ≥ 1. This sequence was seen in Question 7(ii), Sheet 2.

(i) Prove bn ≥ 1 for all n ≥ 1.

(Hint: importantly, bn ≥ 1 implies bn > 0.)

(ii) Prove that bn ≤ 3/2 for all n ≥ 1.

(iii) Prove that {bn}n∈N is an increasing sequence.

(iv) Deduce that limn→∞ bn exists and find its value.

18). Let {an}n∈N be a convergent sequence with limn→∞ an = 0. Prove the
following

(i)

lim
n→∞

sin an = 0,

Hint: Calculate the lengths of the lines AB and AC in

θ

1

A

B C
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and so show that for 0 < θ < π/2 we have 0 < sin θ < θ. A similar result
follows for θ < 0 since sin is a odd function.

(ii)

lim
n→∞

cos an = 1,

(iii)

lim
n→∞

sin an

an

= 1

with the further condition that an 6= 0 for all n ≥ 1.

Hint Calculate the lengths OB,AB and AD followed by the areas OAB, OAC
and OAD in

θ

1

A

B CO D

This should give you θ cos2 θ < sin θ cos θ < θ for 0 < θ < π/2.

Recall the double angle formula,

cos θ = 2 cos2 (θ/2)− 1,

so

2 cos (θ/2) =
√

2 + 2 cos θ,

where, if we start with |θ| < π/2, we take the positive square root.

Define an = 2 cos (θ/2n−1). Show that {an}n≥1 satisfies an+1 =
√

2 + an

for all n ≥ 1, a definition seen in Question 10 on Sheet 3 and Question 7(v)
on Sheet 2. Show that limn→∞ an = 2 whatever the value of θ : |θ| < π/2
(i.e. whatever the value of a1 : |a1| ≤ 2).

Prove that

lim
n→∞

2n−1
√

(2− an) = θ.
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Hint:

2− an =
22 − a2

n

2 + an

=
4(1− cos2 (θ/2n−1))

2 + an

=
4 sin2 (θ/2n−1)

2 + an

,

and then use part (iii) above.
This is a proof of the result you might have guessed in question 7(vi) on

sheet 2 (where θ = π/4).

19) (a) Use the result (†) in Question 2 on Sheet 3 to solve the equation

√
2x2 + 3x + 5 +

√
2x2 − 3x + 5 = 3x. (2)

Hint: The equation here is of the form√
f(x) +

√
g(x) = φ(x) (3)

Multiplying both sides by
√

f(x)−
√

g(x) gives

f(x)− g(x) = φ(x)
(√

f(x)−
√

g(x)
)

. (4)

Thus we have two equations (3) , (4) and, if we temporarily look upon
√

f(x)

and
√

g(x) as the two unknowns, we can solve for
√

f(x) and
√

g(x). The

answers would be of the form
√

f(x) = k(x) and
√

g(x) = `(x). These
are both “simpler” equations than the original in that there is only one
square root in each of these equations unlike the two in (2). It should be
straightforward to solve these simpler equations. It would need to be checked
that any solutions of these easier equations are, in fact, solutions of the
original.

20)(a) Verify that

xm − ym = (x− y)
(
xm−1 + yxm−2 + y2xm−3 + ... + ym−2x + ym−1

)
. (5)

(i) If 0 < y < x show that

m(x− y)ym−1 ≤ xm − ym ≤ m(x− y)xm−1.

Deduce that

jm+1 − (j − 1)m+1

m + 1
≤ jm ≤ (j + 1)m+1 − jm+1

m + 1
.
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Hence prove that

nm+1

m + 1
≤

n∑
j=1

jm ≤ (n + 1)m+1 − 1

m + 1
=

nm+1

m + 1
+ nm + ... .

So we might expect that
∑n

j=1 jm will be a polynomial in n of degree m+1 and

with leading coefficient 1
m+1

. Check this with the known results for m = 1

and 2 (results usually proved using induction). Perhaps you can find the
results for m = 3 and 4.

(b) Write

S (m) =
n∑

j=1

jm.

Start from the binomial expansion in the form

(j + 1)m+1 − jm+1 =
m∑

a=0

(
m + 1

a

)
ja,

and sum over 1 ≤ j ≤ n to deduce

S (m) =
(n + 1)m+1 − 1

m + 1
− 1

(m + 1)

m−1∑
a=0

(
m + 1

a

)
S (a) .

This iterative result allows us to prove facts about S (m) by induction.

Use it to verify the guess made in part (i) that the leading term of S (m)
is nm+1/ (m + 1).

What is the coefficient of nm? of nm−1?

21) Let m ∈ N. Assume {an}n∈N is a convergent sequence of positive terms

with limn→∞ an = ` > 0. Use (5) to show that

∣∣a1/m
n − `1/m

∣∣ < |an − `|
m`(m−1)/m

.

Prove that limn→∞ a
1/m
n = `1/m.

Hint: Apply (5) with (x, y) =
(
a

1/m
n , `1/m

)
.

Can you prove that limn→∞ a
k/m
n = `k/m for all k,m ∈ N, that is,

limn→∞ ar
n = `r for all r ∈ Q, r > 0?
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22) Bernoulli’s inequality states that

(1 + δ)n > 1 + nδ

for all δ > −1 and all n ∈ N. This result actually holds for all n ∈ Q, n ≥ 1.
For n = 3/2 we can show this easily, as follows.

(i) Verify

(1 + δ)1/2 < 1 +
δ

2
(6)

for all δ > −1. (Why not show that (1 + δ)1/q < 1 + δ/q for q ∈ N)

(ii) Deduce that

(1 + δ)3/2 =
(1 + δ)2

(1 + δ)1/2
> 1 +

3δ

2
(7)

for all δ > −1. (Why not show that (1 + δ)2−1/q > 1 + (2− 1/q)δ for q ∈ N.)

(iii) For an application of (7) consider any set of non-negative reals ai ≥ 0,

1 ≤ i ≤ m such that a1+a2+...+am = m. Apply part (ii) to (1 + (ai − 1))3/2

for each i and add the results together to get

a
3/2
1 + a

3/2
2 + ... + a3/2

m ≥ m. (8)

(iv) Further, take any set of m non-negative reals bi, 1 ≤ i ≤ m. Show
that (

b3
1 + b3

2 + ... + b3
m

m

)1/3

≥
(

b2
1 + b2

2 + ... + b2
m

m

)1/2

. (9)

Hint: When the right hand side of (9) is non-zero apply (8) with ai =
(bi/r)

2 where r = (b2
1 + b2

2 + ... + b2
m) /m.

(v) Prove that

x +
1

x
≥ 2

for all x > 0. (It is not necessary to use calculus. Perhaps examine (x− 1)2 .)

This can be rewritten as follows. If a1a2 = 1 with ai > 0, 1 ≤ i ≤ 2, then

a1 + a2 ≥ 2. (10)
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(vi) Extend this to three non-negative reals with a1a2a3 = 1. First show
that at least one of the ai is ≤ 1. Then show that at least one of the ai is
≥ 1. Then prove that a1 + a2 + a3 ≥ 3.

Hint: By relabelling if necessary assume that a2 ≤ 1 and a3 ≥ 1. Let
b1 = a1 and b2 = a2a3, so b1b2 = 1, and apply (10). Then use a2 ≤ 1 and
a3 ≥ 1 to prove that a2 + a3 ≥ a2a3 + 1. Combine to get result.

(vii) Prove by induction that if we have n non-negative reals satisfying
a1a2....an = 1 then

a1 + a2 + ... + an ≥ n. (11)

(So though some of the ai might be small the conditions a1a2....an = 1
means that others have to be large, so large in fact that (11) holds.)

Hint: As in (vi) justify the existence of an ai ≤ 1 and aj ≥ 1. Combine
aiaj as one variable so reducing the number of terms and allowing the use of
an inductive assumption. Finish in the same way as in (vi).

(viii) Extend this to the case when we are given any n non-negative reals,
bi, 1 ≤ i ≤ n, (so no condition on b1b2...bn) and prove that

b1 + b2 + ... + bn

n
≥ (b1b2....bn)1/n . (12)

We denote by

An(b) =
b1 + b2 + ... + bn

n
,

the Arithmetic Mean of the numbers bi, 1 ≤ i ≤ n, and by

Gn(b) = (b1b2....bn)1/n ,

the Geometric Mean of the numbers. So (12) is known as the AM-GM
inequality.

Hint for proof: When Gn(b) 6= 0 apply (11) with ai = bi/Gn(b) for all
1 ≤ i ≤ n.

(ix) As an application of the AM-GM inequality let y > −1 and 1 ≤ m ≤
n. Apply (12) with

b1 = b2 = ... = bn−m = 1

bn−m+1 = ... = bn = 1 + y.
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Deduce that (
1 +

m

n
y
)n/m

≥ 1 + y.

By an appropriate substitution prove that

(1 + δ)n/m ≥ 1 +
n

m
δ (13)

for all δ > −1. In this way we extend Bernoulli’s inequality to all rational
exponents, n/m, greater than 1.

From (13) deduce

(1 + δ)m/n ≤ 1 +
m

n
δ

for all δ > −1. In this way we extend (6) to all positive rational exponents
less than 1.

(x) As an application of (13) assume that ai, 1 ≤ i ≤ t are non-negative
real numbers which satisfy a1 + a2 + ... + at = t. Then for any 1 ≤ m ≤ n
show that

a
n/m
1 + a

n/m
2 + ... + a

n/m
t ≥ t.

(xi) And further, if bi, 1 ≤ i ≤ t are non-negative then, for any 1 ≤ m ≤ n,(
bn
1 + bn

2 + ... + bn
t

t

)1/n

≥
(

bm
1 + bm

2 + ... + bm
t

t

)1/m

. (14)

So (9) is a special case, (m = 2, n = 3), of (14). We write

An
t (b) =

(
bn
1 + bn

2 + ... + bn
t

t

)1/n

for n ≥ 1, (15)

in which case A1
t (b) = At(b), the arithmetic mean defined above. So (14)

can be written as An
t (b) ≥ Am

t (b).

In fact the definition (15) makes sense for all −n ∈ N as long as no bi = 0.
When n = −1 we get the Harmonic Mean

Ht(b) =
t

1
b1

+ 1
b2

+ ... + 1
bt

.

(xii) Show that Ht(b) ≤ Gt(b).

(xiii) Show that if m < 0 < n then Am
t (b) < Gt(b) < An

t (b)
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23) Calculate the nth-partial sum of

∞∑
r=1

2r + 1

r2 (r + 1)2 .

What is the sum of this series?

24) Let j ≥ 1. What is the value of the sum

∞∑
r=1

1

r (r + 1) ... (r + j)
?

25) i) Write

Rj(x, n) =
n∑

r=1

rjxr.

So R1(x, n) was the subject of Question 9, Sheet 4. Show that

R2(x, n) =
n−1∑
r=0

(r + 1)2 xr

= xR2(x, n) + 2xR1(x, n) + xR0(x, n) + x− (n + 1)2 xn+1.

Hence show that the value of the sum
∑∞

r=1 r2xr is, for |x| < 1,

x2 + x

(1− x)3 .

ii) Start from the binomial expansion in the form

(r + 1)j − rj =

j−1∑
a=0

(
j

a

)
ra

and sum over 1 ≤ r ≤ n to get

(1− x) Rj(x, n) = x

j−1∑
a=0

(
j

a

)
Ra(x, n) + x− (n + 1)j xn+1. (16)

(What result do you get when x = 1?)

Use (16) to show that if limn→∞Ra (x, n) exists for all 0 ≤ a ≤ j − 1
then limn→∞Rj (x, n) exists. Hence show that limn→∞Rj (x, n) exists for
all |x| < 1 and j ≥ 1.
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Write Rj (x) = limn→∞Rj (x, n) for |x| < 1.

From looking at the first few values of j we might guess that

Rj (x) =
xPj (x)

(1− x)j+1 ,

where Pj (x) is a polynomial with integer coefficients. Prove this is the case
by giving a recursive formula for Pj (x).

Further show that degreePj (x) = j − 1 and Pj (0) = 1 for all j ≥ 1.

26) Find values for a, b and c such that

1

2
+

2

22
+

3

23
+

4

24
+ ... +

n

2n
= a +

b + cn

2n

holds for all n ∈ N.

Hint: The three cases n = 1, 2 or 3 will give three equations. You have
three unknowns, a, b and c which you can then find. Then show that the
stated equality holds for all n ∈ N.

Deduce that

∞∑
r=1

r

(
1

2

)r

converges with sum 2.
Compare with Question 9 Sheet 4.

27) Let

sk = 2 +
1

2!
+

1

3!
+ ... +

1

k!
.

(i) Relate sk to the corresponding k-th partial sum of
∑∞

r=1 1/r (r + 1).
Hence show that

∑∞
r=1 1/r! converges with sum less than 3.

(ii) As in Question 10 on Sheet 4 define

ck =

(
1 +

1

k

)k

for k ≥ 1. Justify

ck =
k∑

j=0

(
1− 1

k

)(
1− 2

k

)
...

(
1− j − 1

k

)
1

j!
. (17)
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Deduce that ck < sk for all k ≥ 1.

(iii) Let {ak}k∈N be a sequence of real numbers satisfying 0 < ak < 1 for

all k. Prove by induction that

(1− a1) (1− a2) ... (1− an) ≥ 1− (a1 + a2 + ... + an) (18)

for all n ≥ 1.

(If a1 = a2 = a3 = ... = an = δ we get a special case of Bernoulli’s
inequality.)

Deduce that

ck3 ≥
(

1− 1

k

)
sk−1

for all k ≥ 1.

Hint: In the expansion (17) of ck3 throw away all terms with j ≥ k. For
the remaining terms use the inequality (18).
(iv) Conclude that

∞∑
j=0

1

j!
= lim

k→∞

(
1 +

1

k

)k

.

Hint: You may need to use the following facts, well-known from our
course,

(a) A subsequence (say {ck3}k∈N) of a convergent sequence (i.e. {ck}k∈N)
converges to the same limit as the sequence,

(b) The product of two convergent sequences has as its limit the
product of the limits of each individual sequences.

28) Though we do not cover integration in this course, we will assume in this
question, that you know how to integrate 1/t.

(i) Justify ∫ r+1

r

dt

t
≤ 1

r
≤
∫ r

r−1

dt

t
.

(ii) If sn =
∑n

r=1 1/r, justify

1

n
+ ln n ≤ sn ≤ 1 + ln n

for all n ≥ 1.

Aside: (a) In the notes we proved that s2k ≥ (k + 1) /2. The results here
show that s2k ≥ (ln 2) k = 0.69315..k.
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(b) It can be shown that there exists a constant, γ = 0.577215663....,
Euler’s constant, such that∣∣∣∣∣

n∑
r=1

1

r
− ln n− γ

∣∣∣∣∣ ≤ 1

n

for all n sufficiently large.

29) (i) Let
∑∞

r=1 ar be a series with nth-partial sum sn. Assume that limn→∞ s2n =

σ and limn→∞ an = 0. Prove that limn→∞ sn = σ. That is, as long as the
terms of the series tend to zero we need only show that the sequence of even
partial sums converges to be able to deduce that the series converges.

(ii) Use part (i) to show that

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+

1

8
+

1

9
− ...

converges.

30) By using the simple observation that r2 < r (r + 1) prove that, in the
notation of Question 1 on Sheet 5,

1

m + 1
<

∞∑
r=0

1

r2
− sm.

By using the results of Question 3(ii) on Sheet 4 show that the value of
the sum of

∑∞
r=0

1
r2 lies in the interval (1.6406, 1.6498) .

Compare with Question 1 Sheet 5.

31) Prove that

r3 > (r + 1) r (r − 1)

for all r ≥ 1. Use this to prove

∞∑
r=0

1

r3
− sm <

1

2 (m + 1) m
.

Give a lower bound of

1

2 (m + 1) (m + 2)
<

∞∑
r=0

1

r3
− sm.

16



By using the results of Question 3(iii) on Sheet 4 show that the value of
the sum of

∑∞
r=0

1
r3 lies in the interval (1.2013, 1.2021) .

32) Use the Alternating Series test to show that the following series converge.

(i)
∞∑

r=2

(−1)r−1 r99

(r − 1)100 , (ii)
∞∑

r=1

(−1)r+1 r − 1

(r + 2)2 .

33) (i) Prove that

∞∑
r=1

(−1)r+1

(2r − 1) (2r)

converges.

(ii) Write out the first eight or so terms of this series, using partial fractions
on each summand.

34) (i) Write out enough terms of the sequence
{

(−1)n(n+1)/2
}

n≥1
for you to

be convinced of a pattern.

(ii) Why can you write

∞∑
r=1

r odd

(−1)(r+1)/2

r
as

∞∑
j=1

(−1)j

2j − 1
?

Use the Alternating Series Test to prove that this series converges.

(iii) Similarly, prove that

∞∑
r=1

r even

(−1)r/2

r

converges.

(iv) Combine (ii) and (iii) to deduce that

∞∑
r=1

(−1)r(r+1)/2

r

converges.

35) Prove that
√

r + 1 +
√

r − 1 < 2
√

r for all r ≥ 1. Deduce that

√
r + 1−

√
r − 1 ≥ 1√

r
.

17



Use this for r ≥ 2 to prove that

√
n + 1 +

√
n−

√
2 > sn

for all n ≥ 1 where sn =
∑n

r=1 1/
√

r.

Is this in fact an improvement on the upper bound given in Question 4
on Sheet 5?

Find N ∈ N such that N + 1 > s1000 > N .

Could you have found this N using the bounds in Question 4?

36) Note that in Question 4 Sheet 5 if sn =
∑n

r=1 1/
√

r then

1 ≤ 2
√

n− sn ≤ 2
√

2− 1− 1√
n + 1

.

(i) Let tn = 2
√

n− sn. Prove that {tn}n∈N is an increasing sequence.

(ii) Deduce that

lim
n→∞

(
2
√

n− sn

)
= C0

for some constant C0 satisfying 1 < C0 ≤ 2
√

2− 1.

Aside. We often write this result as

n∑
r=1

1√
r

= 2
√

n + C0 + E (n)

where E (n) is an “error” term that satisfies limn→∞E (n) = 0. We would
do further study to see just how “fast” this error tends to zero. Why must
we have E (n) ≥ 1/2

√
n?

37) Assume an > 0 for all n ≥ 1.

(i) Prove that if
∑∞

n=1 an converges then
∑∞

n=1 1/an diverges.
(ii) Give examples of sequences {an}n∈N for which the following hold.

(α)
∞∑

n=1

an diverges and
∞∑

n=1

1

an

diverges.

(β)
∞∑

n=1

an diverges and
∞∑

n=1

1

an

coverges.

18



38) (i) Justify the following steps.
Let ` ∈ N, ` ≥ 2 be given. Set n0 = `4 + 2. Then

(n0 − 2)! = `4! =
`4∏

j=1

j ≥
`4∏

j=`2

j

≥
`4∏

j=`2

`2 > `2(`4−`2) ≥ ``4+2 = `n0 .

(ii) Prove that `n ≤ (n− 2)! for all n ≥ n0.

(iii) Use the First Comparison Test to show that

∞∑
r=1

`r

r!

converges.

39) (i) What is the smallest value, r0 ∈ N, for which r0! ≤ rr0−2
0 ?

Prove, by induction, that r! ≤ rr−2 for all r ≥ r0.

(ii) Prove that

∞∑
r=1

r!

rr

converges

Compare with Question 12 Sheet 6.

40) We trivially have r! ≤ rr for all r ≥ 1. Here we try to improve this.

(i) Starting with (n− 2j)2 ≥ 0, or otherwise, show that

(n− j) j ≤ n2

4
for all 0 ≤ j ≤ n.

(ii) Use (i) to prove that

r! ≤
(

r + 1

2

)r

for all r ≥ 1.

Hint: Look at (r!)2 = (r (r − 1) (r − 2) ...2.1)2 and rearrange as

19



[r × 1] [(r − 1)× 2] [(r − 2)× 3] ... [2× (r − 1)] [1× r]

=
r∏

j=1

[(r + 1− j)× j]

and use (i) on each square bracket.

(iii) Can you find another rearrangement that gives

r! ≤ 2
(r

2

)r

for all r ≥ 1?

(iv) Use (ii) or (iii) to prove that

∞∑
r=1

rr

2rr!
diverges.

41): Improve Question 28 for sn =
∑n

j=1 1/j
(i)From

1 +
1

n
+

n−1∑
j=2

1

j
= sn = 1 +

1

2
+

n∑
j=3

1

j

deduce

1

n
+ C + ln n ≤ sn ≤

1

2
+ C + ln n

for n ≥ 3, where 0 ≤ C = 1− ln 2 < 1/2.

(ii) Prove that

n∑
j=1

sj = (n + 1) sn − n.

(iii) Combine (i) and (ii) and show

n∑
j=1

ln j ≤ ln 2 +
n∑

j=3

(
sj − C − 1

j

)
≤ n ln n− 1

2
n + C.

(iv) Prove

n! ≤ nne−n/2eC =
1

2
nne−(n−2)/2,

for n ≥ 3.

20



(v) Take any k ∈ N. Show that there exists a constant Ck such that

1

n
+ Ck + ln n ≤ sn ≤

1

k
+ Ck + ln n

for all n ≥ k.

(vi) Use (v) in

n∑
j=1

ln j =
k−1∑
j=1

ln j +
n∑

j=k

ln j

to prove

(A)
n∑

j=1

ln j ≤ n ln n−
(

1− 1

k

)
n + Dk

(B)
n∑

j=1

ln j ≥ (n + 1) ln n−
(

1 +
1

k

)
n + Ek

for some constants Dk and Ek, and valid for all n ≥ k. So, in this range of
n, we have

Fkn
(n+1)e−(1+1/k)n ≤ n! ≤ Gkn

ne−(1−1/k)n. (19)

with Fk = eEk and Gk = eDk .

Aside: It can be shown that

lim
n→∞

n!en

nn
√

n

exists.

(vii) Use (19) with k = 4 to show that

∞∑
r=1

2rr!

rr

converges.

(viii) Use (19) with k = 11 to show that

∞∑
r=1

3rr!

rr

diverges.
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Compare with Question 12 Sheet 6

42) Find the radius of convergence of

∞∑
r=1

r!

rr
xr.

You will need to make use of Question 10 Sheet 4.

How does Question 41 relate to your answer?

43) Use the Alternating Series test to show that the following series converge.

(i)
∞∑

r=2

(−1)r−1 r99

(r − 1)100 , (ii)
∞∑

r=1

(−1)r+1 r − 1

(r + 2)2 .

44) (i) Give an example of a convergent series
∑∞

r=1 ar for which
∑∞

r=1 a2
r

diverges.

(ii) Give an example of a convergent series
∑∞

r=1 ar and a convergent sequence

{bn}n≥1 with limn→∞ bn = 0 for which
∑∞

r=1 arbr diverges.

(iii) Give an example of a convergent series
∑∞

r=1 ar for which
∑∞

r=1 (−1)r ar

diverges.

45) (i) Can you use partial fractions to prove that

∞∑
r=1

1

(2r − 1) (2r)

converges? Give your reasons.

Use an appropriate Comparison Test to prove that this series converges

(ii) Use (i) to prove that

∞∑
r=1

r odd

1

r(r + 1)

converges.

Show the partial sums of this series are closely connected with those of

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− .... .
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Hence show that is latter series converges without using the Alternating
series test.

(iii) Use (ii) to show that

∞∑
r=1

r odd

(−1)r+1

r(r + 1)

converges.
Deduce that

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+

1

8
+

1

9
− ....

converges.

Could you have proved this using the Alternating Sign Test?

46) (i) Write out enough terms of the sequence
{

(−1)n(n+1)/2
}

n≥1
for you to

be convinced of the pattern.

(ii) Why can you write

∞∑
r=1

r odd

(−1)(r+1)/2

r
as

∞∑
j=1

(−1)j

2j − 1
?

Use the Alternating Sign Test to prove that this series converges.

(iii) Similarly, prove that

∞∑
r=1

r even

(−1)r/2

r

converges.

(iv) Combine (ii) and (iii) to deduce that

∞∑
r=1

(−1)r(r+1)/2

r

converges.

47) Find the radius of convergence for

(i)
∞∑

r=1

(
1 +

1

r2

)r

xr and (ii)
∞∑

r=1

(
1 +

1

r2

)r2

xr.
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48) Let 0 ≤ θ < 1.
Define

sn =
n∑

r=1

1

rθ
.

Show that sn ≥ n1−θ for all n ≥ 1.

Hence show that

∞∑
r=1

1

rθ

diverges.

49) Let θ > 1. Let

sn =
n∑

r=1

1

rθ
.

(i) Use the idea that a finite sum is ≤ largest term × number of terms to
prove

s2n−1 − s2n−1−1 ≤
(

1

2θ−1

)n−1

for all n ≥ 1. Deduce

s2k−1 ≤
k−1∑
j=0

(
1

2θ−1

)j

for all k ≥ 1.

(ii) Prove that

s2k−1 ≤
2θ

2θ − 1

for all k ≥ 1.

(iii) Prove that

∞∑
r=1

1

rθ

converges.
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50) Let {an}n∈N be a decreasing sequence converging to 0.
(i) Prove that

∞∑
r=1

(ar − ar+1)

converges. What is it’s sum?

(ii) Prove that

∞∑
r=1

(−1)r+1 (ar − ar+1)

converges.
Hint: Does it converge absolutely?

(iii) Write

tn =
n∑

r=1

(−1)r+1 (ar − ar+1) and sn =
n∑

r=1

(−1)r+1 ar.

Prove that

tn = 2sn − a1 + (−1)n an+1.

(iv) Deduce that

∞∑
r=1

(−1)r+1 ar

converges.
So we have a proof of the Alternating Sign Test.

Answers

2)(c) (i) 1, (ii) 4, (iii) 1,

2)(e) (i) 2, (ii) 4.

3) −2, 1,
(1+

√
5)

2
,
(1−

√
5)

2
.

9) 0,

10) 1,

11) (i) (a + b)− (c + d) ,

(ii) 1,

17) (iv)
√

2.
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19) x = 4.

20)(b) nm/2, mnm−1/12 and the constant term is zero for all m ≥ 1.

23) sn = 1− 1/ (n + 1)2 .

24) The value of the sum is 1
j.j!

25) (c) Pj (x) = x
∑j−1

a=1

(
j
a

)
(1− x)j−a−1 Pa (x) + (1− x)j−1 having used

P0 (x) ≡ 1

35) N = 61.

40) (iii) (r!)2 = r2
∏r−1

j=1 (r − j) j.
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