153 Problem Sheet 6

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.
$\left.1^{* *}\right)$ Use the Alternating Series Test to show that the following series converge.
(i) $\sum_{r=2}^{\infty}(-1)^{r-1} \frac{r}{(r-1)^{2}}$,
(ii) $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{r-1}{(r+2)^{2}}$.
2^{*}) Prove that the following series are convergent by proving they are absolutely convergent.
(i) $\sum_{r=1}^{\infty}(-1)^{\frac{1}{2} r(r+1)} \frac{r+1}{r^{3}+1}$,
(ii) $\sum_{r=1}^{\infty} \frac{r+1}{(-2)^{r} r^{2}}$,
(iii) $\sum_{r=1}^{\infty}(-1)^{r} \frac{x^{2 r+1}}{2 r+1}$,
where $-1<x<1$ in part (iii).
3\#) Show that the following series are conditionally convergent.
(i) $\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{\sqrt{r}}$
(ii) $\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{b_{r}}$
where $b_{n}=n+\frac{1}{2}+\frac{3}{2}(-1)^{n+1}$.

Hint: In part (ii) write out the first few terms of the series and evaluate the first few partial sums. There should be a lot of cancellation in these partial sums.

4\#) Determine whether the following series converge or diverge.
(i) $\sum_{r=1}^{\infty} \frac{\cos (\pi r)}{r}$,
(ii) $\sum_{r=1}^{\infty} \frac{(-1)^{r} \cos (\pi r)}{r}$,
(iii) $\sum_{r=1}^{\infty} \frac{(-1)^{r} \cos ^{2}(\pi r)}{r}$,
(iv) $\sum_{r=1}^{\infty}\left(\frac{1+r \cos (\pi r)}{r^{2}}\right)$.

5\#) (i) Write down the first few values of

$$
\begin{aligned}
\sin \left(\frac{\pi}{4}+n \frac{\pi}{2}\right), & n & =0,1,2,3,4,5, \ldots \\
\cos \left(\frac{\pi}{4}+n \frac{\pi}{2}\right), & n & =0,1,2,3,4,5, \ldots
\end{aligned}
$$

(ii) Use (i) to derive a simple expression for

$$
\tan \left(\frac{\pi}{4}+n \frac{\pi}{2}\right), \text { for all } n \geq 0
$$

Can you give a proof for your result?
(iii) Use (ii) to prove that

$$
\sum_{r=1}^{\infty} \tan \left(\frac{\pi}{4}+r \frac{\pi}{2}\right) \frac{1}{r}
$$

is conditionally convergent.
$\left.6^{*}\right)$ (i) Give an example of a convergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\sum_{r=1}^{\infty} a_{r}^{2}$ diverges.
(ii) Give an example of a convergent series $\sum_{r=1}^{\infty} a_{r}$ and a convergent sequence $\left\{b_{n}\right\}_{n \geq 1}$ with $\lim _{n \rightarrow \infty} b_{n}=0$ for which $\sum_{r=1}^{\infty} a_{r} b_{r}$ diverges.
(iii) Give an example of a convergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\sum_{r=1}^{\infty}(-1)^{r+1} a_{r}$ diverges.
7) (i) Can you use partial fractions to prove that

$$
\sum_{r=1}^{\infty} \frac{1}{(2 r-1)(2 r)}
$$

converges? Give your reasons.
Use an appropriate Comparison Test to prove that this series converges
$\left.8^{* *}\right)$ Use the Ratio Test to determine whether the following series are convergent or divergent.
(i) $\sum_{r=1}^{\infty} \frac{r^{3}}{2^{r}}$,
(ii) $\sum_{r=1}^{\infty} \frac{(r!)^{2}}{(2 r)!}$,
(iii) $\sum_{r=1}^{\infty} \frac{(3 r)!}{(r!)^{3}}$,
(iv) $\sum_{r=1}^{\infty}\left(\frac{r}{r+1}\right) \frac{2^{5(r+1)}}{5^{2(r-1)}}$.
$\left.9^{*}\right)$ In the following series, of the form $\sum_{r=1}^{\infty} a_{r}$, show that $a_{n+1} \geq a_{n}$ for all sufficiently large n. Hence deduce that these series diverge.
(i) $\sum_{r=1}^{\infty} \frac{r!}{2^{r}}$,
(ii) $\sum_{r=1}^{\infty} \frac{(2 r)!}{6^{r} r!}$.

Why can you not apply the Ratio Test to show these diverge?
10\#) If you can use the ratio test to show that both $\sum_{r=1}^{\infty} a_{r}$ and $\sum_{r=1}^{\infty} b_{r}$ converge what can you say of $\sum_{r=1}^{\infty} a_{r} b_{r}$ and why?

11H) Is it possible to apply the Ratio Test to the series

$$
\frac{1}{2^{2}}+\frac{1}{2^{1}}+\frac{1}{2^{4}}+\frac{1}{2^{3}}+\frac{1}{2^{6}}+\frac{1}{2^{5}}+\ldots ?
$$

Does this series converge?
12\#) (i) From Question 10 on Sheet 4 we know that

$$
\lim _{r \rightarrow \infty}\left(1+\frac{1}{r}\right)^{r}=c
$$

for some constant $2<c<3$. Use this to show that

$$
\lim _{r \rightarrow \infty}\left(\frac{r}{r+1}\right)^{r}=c^{-1}
$$

(ii) Use the Ratio Test and (i) to see if

$$
\sum_{r=1}^{\infty} \frac{r!}{r^{r}}
$$

converges or diverges.
(iii) What can you say of
(a) $\sum_{r=1}^{\infty} \frac{2^{r} r!}{r^{r}}$
and
(b) $\sum_{r=1}^{\infty} \frac{3^{r} r!}{r^{r}}$?
13) (i) Show that r ! $\leq r^{r}$ for all $r \geq 1$.
(ii) Deduce that

$$
\sum_{r=1}^{\infty} \frac{r^{r}}{r!}
$$

diverges.
14\#) (i) Prove that the series $\sum_{r=1}^{\infty} \frac{r}{r^{2}+1} x^{r}$ is convergent when $|x|<1$ and divergent when $|x|>1$. What happens when $x=1$ or $x=-1$?
(ii) Determine all values of x for which the series $\sum_{r=1}^{\infty} \frac{(-1)^{r}}{r x^{r}}$ converges.
$\left.15^{* *}\right)$ Determine the radius of convergence for the following power series.
(i) $\sum_{r=1}^{\infty} \frac{r^{3} x^{r}}{r!}$,
(ii) $\sum_{r=1}^{\infty} \frac{(r!)^{2} x^{r}}{(2 r)!}$,
(iii) $\sum_{r=1}^{\infty}\left(3^{r}+4^{r}\right) x^{r}$.
$16 \#$) (i) Give an example of a divergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$.
(ii) Give an example of a convergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$.
(iii) Show that the Harmonic series is an example of a divergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$.
Hint: Try to make use of Question 4 on the Additional Question Sheet .
(iv) Give an example of a convergent series $\sum_{r=1}^{\infty} a_{r}$ for which $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$.
17^{*}) Use Cauchy's n-th root test to determine whether the following converge.
(i) $\sum_{r=1}^{\infty} \frac{1}{r^{r}}$,
(ii) $\sum_{r=1}^{\infty}\left(2+\frac{4}{r}\right)^{r}$.
18) Determine all values of x for which the following series converge.

$$
\text { (i) } \sum_{r=1}^{\infty}\left(\frac{r+1}{r x}\right)^{r} \text {, (ii) } \sum_{r=1}^{\infty}\left(5+\frac{4}{r}\right)^{2} x^{r} \text {, (iii) } \sum_{r=1}^{\infty}\left(5+\frac{4}{r}\right)^{r} x^{r}
$$

