153 Problem Sheet 5

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.

1\#) Let

$$
s_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}} \quad \text { for } n \in \mathbb{N} .
$$

(i) Show that $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ is an increasing sequence.
(ii) Justify the following bound,

$$
\begin{aligned}
s_{n} & <1+\frac{1}{2^{2}}+\frac{1}{3.2}+\frac{1}{4.3}+\ldots+\frac{1}{n(n-1)} \\
& =\frac{7}{4}-\frac{1}{n} .
\end{aligned}
$$

Hence, by verifying the conditions of Theorem 3.4, deduce that

$$
\sum_{r=1}^{\infty} \frac{1}{r^{2}}
$$

is convergent with sum no greater than $\frac{7}{4}$.
(The value of the limit is $\frac{\pi^{2}}{6}=1.64493 \ldots$, but this is hard to show.)
2) Let $\sum_{r=1}^{\infty} a_{r}$ be a series of non-negative terms which is convergent with sum σ. Let $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be a subsequence of $\left\{a_{n}\right\}_{n \in \mathbb{N}}$.

Prove that $\sum_{r=1}^{\infty} b_{r}$ is convergent with its sum τ satisfying $\tau \leq \sigma$.
(Hint: Show that σ is an upper bound for $\left\{t_{n}: n \in \mathbb{N}\right\}$, where t_{n} is the n-th partial sum for the series $\sum_{r=1}^{\infty} b_{r}$.)
3^{*}) Prove that the following series are divergent.
(i) $\sum_{r=1}^{\infty} \frac{r}{r+1}$
(ii) $\sum_{r=1}^{\infty}(-1)^{r}(r-\sqrt{r(r-1)})$.
(Hint: Apply Corollary 4.6 and, for part (ii), use Question 2 on Sheet 3.)

4\#) Let

$$
s_{n}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}} .
$$

Recall that we saw in the notes that $s_{n}>\sqrt{n}$ for all $n \geq 1$.
(i) Prove that for all $r \in \mathbb{N}$ we have

$$
2(\sqrt{r}-\sqrt{r-1}) \geq \frac{1}{\sqrt{r}} \geq 2(\sqrt{r+1}-\sqrt{r})
$$

(Hint: Use (\dagger) from Question 2 on Sheet 3 twice.)
(ii) Deduce

$$
2 \sqrt{n}-1 \geq s_{n} \geq 2 \sqrt{n+1}+1-2 \sqrt{2}
$$

for all $n \geq 1$ and further show

$$
2 \sqrt{n}-1 \geq s_{n} \geq 2 \sqrt{n}+1-2 \sqrt{2}+\frac{1}{\sqrt{n+1}}
$$

5)(i) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a convergent sequence with limit ℓ. Prove that

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0
$$

(Hint: Look at $\left|a_{n+1}-\ell+\ell-a_{n}\right|$).
(ii) Give an example of an increasing sequence $\left\{a_{n}\right\}_{n \geq 1}$ that is not bounded above (and so diverges) but for which

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0
$$

(Hint: Think about using the Harmonic series in some way.)

6\#) Use the First Comparison Test to determine whether the following series are convergent or divergent.
(i) $\sum_{r=0}^{\infty} \frac{1}{2^{r}+3^{r}}$,
(ii) $\sum_{r=1}^{\infty} \frac{1}{r 3^{r}}$,
(iii) $\sum_{r=1}^{\infty} \frac{1}{r^{4 / 5}}$,
(iv) $\sum_{r=2}^{\infty} \frac{1}{\sqrt{r^{2}-1}}$,
(v) $\sum_{r=1}^{\infty} \frac{1+\sin r}{3 r^{2}+r}$.
$7^{* *}$) Use the Second Comparison Test to determine whether the following series are convergent or divergent.
(i) $\sum_{r=1}^{\infty} \frac{r+1}{r^{3}+2}$,
(ii) $\sum_{r=1}^{\infty} \sqrt{\frac{r-1}{r^{3}}}$,
(iii) $\sum_{r=1}^{\infty} \frac{2^{r}}{3^{r}-1}$.
8^{*}) Use the Alternating Series Test to prove that the following series are convergent.
(i) $\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{2 r}$,
(ii) $\sum_{r=1}^{\infty}(-1)^{r+1}(\sqrt{r+1}-\sqrt{r-1})$.
(Hint: In part (ii) look back at Question 2a(ii) on Sheet 3.)

