153 Problem Sheet 5

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a # will be discussed in the problems class. Those marked with H are slightly harder than the others.

1#) Let

$$s_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 for $n \in \mathbb{N}$.

(i) Show that $\{s_n\}_{n\in\mathbb{N}}$ is an increasing sequence.

(ii) Justify the following bound,

$$s_n < 1 + \frac{1}{2^2} + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3} + \dots + \frac{1}{n(n-1)}$$

= $\frac{7}{4} - \frac{1}{n}$.

Hence, by verifying the conditions of Theorem 3.4, deduce that

$$\sum_{r=1}^{\infty} \frac{1}{r^2} \tag{\dagger}$$

is convergent with sum no greater than $\frac{7}{4}$.

(The value of the limit is $\frac{\pi^2}{6} = 1.64493...$, but this is hard to show.)

2) Let $\sum_{r=1}^{\infty} a_r$ be a series of non-negative terms which is convergent with sum σ . Let $\{b_n\}_{n\in\mathbb{N}}$ be a subsequence of $\{a_n\}_{n\in\mathbb{N}}$.

Prove that $\sum_{r=1}^{\infty} b_r$ is convergent with its sum τ satisfying $\tau \leq \sigma$. (Hint: Show that σ is an upper bound for $\{t_n : n \in \mathbb{N}\}$, where t_n is the *n*-th partial sum for the series $\sum_{r=1}^{\infty} b_r$.)

 3^*) Prove that the following series are divergent.

(i)
$$\sum_{r=1}^{\infty} \frac{r}{r+1}$$
 (ii) $\sum_{r=1}^{\infty} (-1)^r \left(r - \sqrt{r(r-1)}\right)$.

(Hint: Apply Corollary 4.6 and, for part (ii), use Question 2 on Sheet 3.)

4#) Let

$$s_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}.$$

Recall that we saw in the notes that $s_n > \sqrt{n}$ for all $n \ge 1$. (i) Prove that for all $r \in \mathbb{N}$ we have

$$2\left(\sqrt{r} - \sqrt{r-1}\right) \ge \frac{1}{\sqrt{r}} \ge 2\left(\sqrt{r+1} - \sqrt{r}\right).$$

(Hint: Use (†) from Question 2 on Sheet 3 twice.)(ii) Deduce

$$2\sqrt{n} - 1 \ge s_n \ge 2\sqrt{n+1} + 1 - 2\sqrt{2}$$

for all $n \ge 1$ and further show

$$2\sqrt{n} - 1 \ge s_n \ge 2\sqrt{n} + 1 - 2\sqrt{2} + \frac{1}{\sqrt{n+1}}$$

5)(i) Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence with limit ℓ . Prove that

$$\lim_{n \to \infty} \left(a_{n+1} - a_n \right) = 0.$$

(Hint: Look at $|a_{n+1} - \ell + \ell - a_n|$).

(ii) Give an example of an increasing sequence $\{a_n\}_{n\geq 1}$ that is **not** bounded above (and so diverges) but for which

$$\lim_{n \to \infty} \left(a_{n+1} - a_n \right) = 0.$$

(Hint: Think about using the Harmonic series in some way.)

6#) Use the First Comparison Test to determine whether the following series are convergent or divergent.

(i)
$$\sum_{r=0}^{\infty} \frac{1}{2^r + 3^r}$$
, (ii) $\sum_{r=1}^{\infty} \frac{1}{r^{3r}}$, (iii) $\sum_{r=1}^{\infty} \frac{1}{r^{4/5}}$,
(iv) $\sum_{r=2}^{\infty} \frac{1}{\sqrt{r^2 - 1}}$, (v) $\sum_{r=1}^{\infty} \frac{1 + \sin r}{3r^2 + r}$.

 $7^{\ast\ast})$ Use the Second Comparison Test to determine whether the following series are convergent or divergent.

(i)
$$\sum_{r=1}^{\infty} \frac{r+1}{r^3+2}$$
, (ii) $\sum_{r=1}^{\infty} \sqrt{\frac{r-1}{r^3}}$, (iii) $\sum_{r=1}^{\infty} \frac{2^r}{3^r-1}$.

 $8^*)$ Use the Alternating Series Test to prove that the following series are convergent.

(i)
$$\sum_{r=1}^{\infty} (-1)^{r+1} \frac{1}{2r}$$
, (ii) $\sum_{r=1}^{\infty} (-1)^{r+1} \left(\sqrt{r+1} - \sqrt{r-1}\right)$.

(Hint: In part (ii) look back at Question 2a(ii) on Sheet 3.)