153 Problem Sheet 4

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.
$\left.1^{* *}\right)$ Use the Sandwich Rule to show that $\lim _{n \rightarrow \infty} a_{n}=0$ for the following:

$$
\begin{array}{ll}
\text { (i) } a_{n}=\frac{\sin ^{2} n}{n}, & \text { (ii) } a_{n}=\frac{(-1)^{n} n}{\sqrt{n^{3}}+1} .
\end{array}
$$

2) Use the Sandwich rule to calculate the limits of the following sequences.

$$
\text { (i) }\left\{\frac{2 n+\cos (n \pi / 4)}{3 n+\sin (n \pi / 4)}\right\}_{n \in \mathbb{N}} \text {, (ii) }\left\{\frac{1}{n} \sqrt{n^{2}+2(-1)^{n} n+1}\right\}_{n \in \mathbb{N}} \text {. }
$$

3) Calculate the numerical values of the first ten partial sums for each of the following series. That is, calculate s_{n} for $1 \leq n \leq 10$ in each of the following.
(i) $\sum_{r=1}^{\infty} r\left(\frac{1}{2}\right)^{r}$,
(ii) $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$,
(iii) $\sum_{r=1}^{\infty} \frac{1}{r^{3}}$,
(iv) $\sum_{r=1}^{\infty} \frac{1}{\sqrt{r}}$.

Can you guess from your calculations whether the series converge or diverge?
4\#) For each of the following series, find a formula for the n-th partial sum and state whether the series is convergent or divergent.
(i) $\sum_{r=1}^{\infty}(r-2)$
(ii) $\sum_{r=1}^{\infty}\left(\frac{2}{3}\right)^{r}$.

5\#) Use partial fractions, in the manner used in the proof of Theorem 4.3, to verify that the expressions given below for the n-th partial sums of the corresponding series. Deduce that the series converge and find their sums. (i)

$$
\text { For } \sum_{r=1}^{\infty} \frac{1}{(2 r-1)(2 r+1)} \quad \text { the partial sum } s_{n}=\frac{1}{2}-\frac{1}{2(2 n+1)} \text {, }
$$

(ii)

For $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)} \quad$ the partial sum $s_{n}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$,
$6 \#)$ Let $\left\{a_{r}\right\}_{r \in \mathbb{N}}$ be a convergent sequence with limit α. For each $r \in \mathbb{N}$, let $b_{r}=a_{r}-a_{r+1}$.

Find an expression for the n-th partial sum of $\sum_{r=1}^{\infty} b_{r}$.
Prove that this series converges with sum $a_{1}-\alpha$.
How does the result of this question relate to question 5 above?
7) Use (\dagger) from Question 2, Sheet 3, to evaluate the n-th partial sum of

$$
\sum_{r=1}^{\infty} \frac{1}{\sqrt{r+1}+\sqrt{r}} .
$$

Deduce that the series diverges.
$8 \mathrm{H} \#$) (i) Following the proof of Lemma 3.9 use induction on n to prove that for all $\delta \geq 0$ and all $n \geq 1$ we have

$$
(1+\delta)^{n} \geq 1+n \delta+\frac{n(n-1)}{2} \delta^{2}
$$

(ii) Start from $(1+\delta)^{n} \geq n(n-1) \delta^{2} / 2$ and follow the proof of Theorem 3.10 to prove that, if $|x|<1$, then

$$
\lim _{n \rightarrow \infty} n x^{n}=0
$$

9) (i) Sum each of the following:

$$
\begin{array}{r}
x+x^{2}+x^{3}+\ldots+x^{n} \\
x^{2}+x^{3}+\ldots+x^{n} \\
x^{3}+\ldots+x^{n}
\end{array}
$$

(ii) Add your results together to find an expression for

$$
\sum_{r=1}^{n} r x^{r}
$$

(iii) For $|x|<1$ prove that $\sum_{r=1}^{\infty} r x^{r}$ converges and find its sum.

10\#) For $k \in \mathbb{N}$ define

$$
c_{k}=\left(1+\frac{1}{k}\right)^{k}
$$

(i) Prove that for each $k \in \mathbb{N}$

$$
\left(1+\frac{1}{k+1}\right)\left(1+\frac{1}{k}\right)^{-1}=1-\frac{1}{(k+1)^{2}} .
$$

(ii) Deduce that for each $k \in \mathbb{N}$

$$
\frac{c_{k+1}}{c_{k}}=\left(1+\frac{1}{k+1}\right)\left(1-\frac{1}{(k+1)^{2}}\right)^{k}
$$

(iii) Apply Bernoulli's Lemma, Lemma 3.9, to get, for each $k \in \mathbb{N}$,

$$
\frac{c_{k+1}}{c_{k}} \geq 1+\frac{1}{(k+1)^{3}} .
$$

(iv) Deduce that $\left\{c_{k}\right\}_{k \in \mathbb{N}}$ is an increasing sequence.
(v) For any $n \geq 1$ use induction on k to show that

$$
\left(1+\frac{1}{n}\right)^{k}<1+\frac{k}{n}+\frac{k^{2}}{n^{2}} \quad \text { for all } 1 \leq k \leq n
$$

(vi) Deduce that $\left\{c_{k}\right\}_{k \in \mathbb{N}}$ is bounded above.
(vii) Conclude that

$$
c=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}
$$

exists and $2<c<3$.
(The value of the limit is e, the base of the natural logarithm.)

