
153 Problem Sheet 4
All questions should be attempted. Those marked with a ** must be

handed in for marking by your supervisor. Hopefully the supervisor will
have time to cover at least the questions marked with a * or **. Questions
marked with a # will be discussed in the problems class. Those marked with
H are slightly harder than the others.

1**) Use the Sandwich Rule to show that limn→∞ an = 0 for the following:

(i) an =
sin2 n

n
, (ii) an =

(−1)nn√
n3 + 1

.

2) Use the Sandwich rule to calculate the limits of the following sequences.

(i)

{
2n + cos (nπ/4)

3n + sin (nπ/4)

}
n∈N

, (ii)

{
1

n

√
n2 + 2 (−1)n n + 1

}
n∈N

.

3) Calculate the numerical values of the first ten partial sums for each of the
following series. That is, calculate sn for 1 ≤ n ≤ 10 in each of the following.

(i)
∞∑

r=1

r

(
1

2

)r

, (ii)
∞∑

r=1

1

r2
, (iii)

∞∑
r=1

1

r3
, (iv)

∞∑
r=1

1√
r
.

Can you guess from your calculations whether the series converge or
diverge?

4#) For each of the following series, find a formula for the n-th partial sum
and state whether the series is convergent or divergent.

(i)
∞∑

r=1

(r − 2) (ii)
∞∑

r=1

(
2

3

)r

.

5#) Use partial fractions, in the manner used in the proof of Theorem 4.3,
to verify that the expressions given below for the n-th partial sums of the
corresponding series. Deduce that the series converge and find their sums.
(i)

For
∞∑

r=1

1

(2r − 1) (2r + 1)
the partial sum sn =

1

2
− 1

2 (2n + 1)
,

1



(ii)

For
∞∑

r=1

1

r (r + 1) (r + 2)
the partial sum sn =

1

4
− 1

2 (n + 1) (n + 2)
,

6#) Let {ar}r∈N be a convergent sequence with limit α. For each r ∈ N, let
br = ar − ar+1.

Find an expression for the n-th partial sum of
∑∞

r=1 br.

Prove that this series converges with sum a1 − α.

How does the result of this question relate to question 5 above?

7) Use (†) from Question 2, Sheet 3, to evaluate the n-th partial sum of

∞∑
r=1

1√
r + 1 +

√
r
.

Deduce that the series diverges.

8H#) (i) Following the proof of Lemma 3.9 use induction on n to prove that
for all δ ≥ 0 and all n ≥ 1 we have

(1 + δ)n ≥ 1 + nδ +
n (n− 1)

2
δ2.

(ii) Start from (1 + δ)n ≥ n (n− 1) δ2/2 and follow the proof of Theorem
3.10 to prove that, if |x| < 1, then

lim
n→∞

nxn = 0.

9) (i) Sum each of the following:

x + x2 + x3 + ... + xn

x2 + x3 + ... + xn

x3 + ... + xn

...

(ii) Add your results together to find an expression for

n∑
r=1

rxr.

(iii) For |x| < 1 prove that
∑∞

r=1 rxr converges and find its sum.

2



10#) For k ∈ N define

ck =

(
1 +

1

k

)k

.

(i) Prove that for each k ∈ N(
1 +

1

k + 1

) (
1 +

1

k

)−1

= 1− 1

(k + 1)2 .

(ii) Deduce that for each k ∈ N

ck+1

ck

=

(
1 +

1

k + 1

) (
1− 1

(k + 1)2

)k

.

(iii) Apply Bernoulli’s Lemma, Lemma 3.9, to get, for each k ∈ N,

ck+1

ck

≥ 1 +
1

(k + 1)3 .

(iv) Deduce that {ck}k∈N is an increasing sequence.

(v) For any n ≥ 1 use induction on k to show that(
1 +

1

n

)k

< 1 +
k

n
+

k2

n2
for all 1 ≤ k ≤ n.

(vi) Deduce that {ck}k∈N is bounded above.

(vii) Conclude that

c = lim
k→∞

(
1 +

1

k

)k

exists and 2 < c < 3.

(The value of the limit is e, the base of the natural logarithm.)

3


