## 153 Problem Sheet 3

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.
1)(i) Prove by induction that $2^{n} \geq n^{2}$ for all $n \geq 4$.

Deduce, using the Archimedean Principle, that

$$
\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0
$$

(ii) Prove by induction that $n^{n-1} \geq n$ ! for all $n \geq 1$.

Deduce, using the Archimedean Principle, that

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

2\#) The factorization of a difference of squares, namely $x^{2}-y^{2}=(x-y)(x+y)$ valid for all $x, y \in \mathbb{R}$, can be used in the form

$$
a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) \quad \text { valid for all } a, b \geq 0 .
$$

In this question we give three applications of $(\dagger)$.
a)(i) Use ( $\dagger$ ) with $(a, b)=(n+1, n-1)$ to prove that

$$
\frac{1}{\sqrt{n+1}}<\sqrt{n+1}-\sqrt{n-1}<\frac{1}{\sqrt{n-1}}
$$

holds for all $n \geq 2$.
a)(ii) Deduce, using the Archimedean Principle, that

$$
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n-1})=0
$$

(Hint: look back at Question 9(iv) on Sheet 2.)
We first looked at this sequence in Question 8 of sheet 2.
b)(i) Use ( $\dagger$ ) with $(a, b)=\left(\frac{n}{n-1}, 1\right)$ to prove that

$$
\left|\sqrt{\frac{n}{n-1}}-1\right|<\frac{1}{2(n-1)}
$$

holds for all $n \geq 2$.
b)(ii) Deduce, using the Archimedean Principle, that

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n}{n-1}}=1
$$

c)(i) Use ( $\dagger$ ) with $(a, b)=\left(n^{2}, n(n-1)\right)$ to prove that

$$
\frac{1}{2} \leq n-\sqrt{n(n-1)} \leq \frac{1}{2} \sqrt{\frac{n}{n-1}}
$$

holds for all $n \geq 2$.
c)(ii) Deduce, using the Archimedean Principle, that

$$
\lim _{n \rightarrow \infty}(n-\sqrt{n(n-1)})=\frac{1}{2} .
$$

(Hint: Use part b(ii) of this question.)
$\left.3^{*}\right)$ For each of the following sequences, decide whether it is bounded, monotonic or convergent.
(i) $\left\{\frac{n-1}{n}\right\}_{n \in \mathbb{N}}$
(ii) $\left\{(-1)^{n}+\frac{1}{n}\right\}_{n \in \mathbb{N}}$
(iii) $\left\{\frac{n^{2}+1}{n}\right\}_{n \in \mathbb{N}}$
(iv) $\left\{1-\frac{(-1)^{n}}{n}\right\}_{n \in \mathbb{N}}$.
4) Let $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be a subsequence of $\left\{a_{n}\right\}_{n \in \mathbb{N}}$. State, with reasons, whether the following are true or false.
(i) If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$ then $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$,
(ii) If $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ is convergent then $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is convergent,
(iii) If $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ is obtained by omitting a finite number of terms from $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$ then $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$.
(iv) If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is convergent and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$ then $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ has limit $\ell$.
5) Suppose that $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are convergent sequences.
(i) If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, prove that $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$;
(ii) Find examples of $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ with $a_{n}<b_{n}$ for all $n \in \mathbb{N}$ but for which $\lim _{n \rightarrow \infty} a_{n} \nless \lim _{n \rightarrow \infty} b_{n}$.
6) Using Corollary 3.8(ii), prove that if $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is convergent and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ is divergent, then $\left\{a_{n}+b_{n}\right\}_{n \in \mathbb{N}}$ is divergent.

7\#) Find examples of sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that
(i) $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are divergent but $\left\{a_{n}+b_{n}\right\}_{n \in \mathbb{N}}$ is convergent;
(ii) $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are divergent but $\left\{a_{n} b_{n}\right\}_{n \in \mathbb{N}}$ is convergent;
(iii) $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are unbounded but $\left\{a_{n}+b_{n}\right\}_{n \in \mathbb{N}}$ is bounded yet divergent.
$8^{* *}$ ) Use Theorems 3.7 and 3.10 along with Corollary 3.8 to prove that the following sequences are convergent and find their limits.
(i) $\left\{\frac{n^{2}-n}{2 n^{2}+1}\right\}_{n \in \mathbb{N}}$,
(ii) $\left\{\frac{2 n^{2}-3 n+2}{n^{3}+1}\right\}_{n \in \mathbb{N}}$,
(iii) $\left\{\frac{\frac{1}{2}-\left(\frac{1}{3}\right)^{n}}{\frac{1}{3}-\left(\frac{1}{4}\right)^{n}}\right\}_{n \in \mathbb{N}}$
(iv) $\left\{\frac{4^{n}-3^{n}}{4^{n}-3}\right\}_{n \in \mathbb{N}}$,
(v) $\left\{\frac{2^{n}+n}{2^{n}-n}\right\}_{n \in \mathbb{N}}$,
(vii) $\left\{\frac{5 n!-6 n^{n}}{6 n!-5 n^{n}}\right\}_{n \in \mathbb{N}}$.
9) (Exam 1997) Suppose that the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is defined recursively by

$$
a_{1}=1 \text { and } \quad 2 a_{n+1}=a_{n}+3 .
$$

Prove that the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is increasing and bounded above by 3 . Hence, or otherwise, determine the limit $\lim _{n \rightarrow \infty} a_{n}$.

We first looked at this sequence in Question 7(i) on Sheet 2.
10\#) Suppose that the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is defined recursively by

$$
a_{1}=\sqrt{2} \text { and } a_{n+1}=\sqrt{a_{n}+2} .
$$

Prove that the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is increasing and bounded above by 2 . Hence, or otherwise, determine $\lim _{n \rightarrow \infty} a_{n}$.

We first looked at this sequence in Question 7(v) on Sheet 2.

