153 Problem Sheet 2

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.
$\left.1^{* *}\right)$ Prove, using Theorem 2.3, that 1 is the $g l b$ of the set $\left\{\frac{n^{2}+1}{n^{2}}: n \in \mathbb{N}\right\}$.
2) In the notes we have defined the closed-open interval $[a, b)=\{x: a \leq x<b\}$ for $a, b \in \mathbb{R}$.
(i) Verify the definition of $g l b$ to prove that $a=g l b([a, b))$.
(ii) Use the definition of lub along with proof by contradiction to show that $b=l u b([a, b))$.
(iii) Alternatively, use Theorem 2.2 to show that $b=\operatorname{lub}([a, b))$.
3^{*}) Let A and B be subsets of \mathbb{R} that are bounded above. Show that $A \cup B$ is bounded above. What is $l u b(A \cup B)$ in terms of $l u b A$ and $l u b B$?
$4 \mathrm{H})$ Let A_{1} and A_{2} be non-empty subsets of \mathbb{R} which are bounded above with lubs β_{1} and β_{2} respectively. Define

$$
A_{1}+A_{2}=\left\{a_{1}+a_{2}: a_{1} \in A_{1}, a_{2} \in A_{2}\right\} .
$$

Show that $A_{1}+A_{2}$ is bounded above with lub equal to $\beta_{1}+\beta_{2}$.
(Hint: Show that $\beta_{1}+\beta_{2}$ is the lub by verifying the conditions of Theorem 2.2.

So, first show that $\beta_{1}+\beta_{2}$ is an upper bound.
Then show that, given any $\varepsilon>0$, that $\beta_{1}+\beta_{2}-\varepsilon$ is not an upper bound by finding $a_{1} \in A_{1}$ such that $a_{1}>\beta_{1}-\frac{\varepsilon}{2}$ and $a_{2} \in A_{2}$ such that $a_{2}>\beta_{2}-\frac{\varepsilon}{2}$.

A different proof is given in the solution sheets.)
$5 \#)$ Write down the formulae for a_{n}, the n-th term, of the following sequences.
(i) $1,2,4,8,16, \ldots$,
(ii) $0,1,0,1,0,1, \ldots$,
(iii) $\frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \ldots$,
(iv) $-1, \frac{1}{3},-\frac{1}{5}, \frac{1}{7},-\frac{1}{9}, \frac{1}{11}, \ldots$,
(v) $1,-1,2,-2,3,-3, \ldots$

6\#) Find the limits of the following sequences or state they do not exist. (You need not justify your answers.)
(i) $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \ldots$,
(ii) $\frac{3}{2},-\frac{4}{3}, \frac{5}{4},-\frac{6}{5}, \ldots$,
(iii) $-1,-2,-3,-4, \ldots$,
(iv) $-1,-\frac{1}{2},-\frac{1}{3},-\frac{1}{4}, \ldots$,
(v) $2,2.2,2.22,2.222, \ldots$

7\#) Using, if necessary, a calculator evaluate at least the first 6 terms of each of the following sequences. Can you guess what the limit is in each case? If a limit is not readily apparent calculate, if possible, a few terms of the sequence with n various small powers of 10 .
(i) $a_{1}=1, \quad 2 a_{n+1}=a_{n}+3 \quad$ for each $n \geq 1$;
(ii) $b_{1}=1, \quad b_{n+1}=1+\frac{1}{1+b_{n}} \quad$ for each $n \geq 1$;
(iii) $c_{n}=n-\sqrt{n(n-1)}$ for each $n \geq 1$;
(iv) $d_{n}=n^{1 / n} \quad$ for each $n \geq 1$;
(v) ${ }^{* *} e_{1}=\sqrt{2}, \quad e_{n+1}=\sqrt{2+e_{n}} \quad$ for each $n \geq 1$;
(vi)** $f_{n}=2^{n+1} \sqrt{2-e_{n}} \quad$ for each $n \geq 1$, where e_{n} is as in part (iii).

8\#) From calculating the value of $\sqrt{n+1}-\sqrt{n-1}$ for a few values of n you might guess that the sequence $\{\sqrt{n+1}-\sqrt{n-1}\}_{n \in \mathbb{N}}$ converges with limit 0 . To prove this you would have to verify the definition of convergence which we will do in a later question.

For now, take each value of ε below and calculate the smallest value $N=N(\varepsilon) \in \mathbb{N}$ such that

$$
|\sqrt{n+1}-\sqrt{n-1}|<\varepsilon \quad \text { for all } n \geq N
$$

(i) $\varepsilon=\frac{1}{10}$,
(ii) $\varepsilon=\frac{1}{20}$,
(iii) $\varepsilon=\frac{1}{40}$,
(iv) $\varepsilon=\frac{1}{80}$.

As we half the value of ε what happens to N ?
(You may assume that $\{\sqrt{n+1}-\sqrt{n-1}\}_{n \in \mathbb{N}}$ is a decreasing sequence, though you might also try to prove this.)
9) In each example below verify the definition of limit. So, assume that an $\varepsilon>0$ is given. Explain how the Archimedean Principle can be used to find $N=N(\varepsilon) \in \mathbb{N}$ such that if $n \geq N$ then $\left|x_{n}-\ell\right|<\varepsilon$.

Also, in each case below, if ε is halved how does $N(\varepsilon)$ change?
(i) $\left\{\frac{n-1}{2 n}\right\}_{n \in \mathbb{N}}$ has limit $\frac{1}{2}$,
(ii) $\left\{\frac{(-1)^{n}}{n}\right\}_{n \in \mathbb{N}}$ has limit 0 ,
${ }^{* *}$ (iii) $\left\{\frac{2 n+1}{3 n-1}\right\}_{n \in \mathbb{N}}$ has limit $\frac{2}{3}$,
(iv) $\left\{\sqrt{\frac{1}{n}}\right\}_{n \in \mathbb{N}}$ has limit 0 .
10) By verifying the definition of convergence prove that the following series converge and find their limits..
(i) $\left\{\frac{n^{2}-n}{n^{2}+n}\right\}_{n \in \mathbb{N}}$
(ii) $\left\{\frac{5^{n}-1}{5^{n}+1}\right\}_{n \in \mathbb{N}}$
(iii) $\left\{\frac{5^{n}-3^{n}}{5^{n}+3^{n}}\right\}_{n \in \mathbb{N}}$.

