153 Problem Sheet 1

All questions should be attempted. Those marked with a ** must be handed in for marking by your supervisor. Hopefully the supervisor will have time to cover at least the questions marked with a * or **. Questions marked with a \# will be discussed in the problems class. Those marked with H are slightly harder than the others.
1\#) Prove or disprove the following statements:
(i) For all $a, b \in \mathbb{R}$ if a and b are rational then $a+b$ is rational;
(ii) For all $a, b \in \mathbb{R}$ if a and b are irrational then $a+b$ is irrational.
2) (i) You know from course 112 that $\sqrt{2}$ is irrational. Use this fact to prove that $\sqrt{3+2 \sqrt{2}}$ is irrational.
Hint: Use proof by contradiction, so assume $\sqrt{3+2 \sqrt{2}}$ is rational.
(ii) Let $x=\sqrt{3+2 \sqrt{2}}-\sqrt{3-2 \sqrt{2}}$. Calculate x^{2}. Is x irrational?
$3^{* *}$) (i) Prove that $\sqrt{6}$ is irrational.
(Hint: Use the same method as you used in course 112 to prove that $\sqrt{2}$ is irrational.)
(ii) Use part (i) and proof by contradiction to prove that $\sqrt{2}+\sqrt{3}$ is irrational.

4\#) Find a polynomial with integer coefficients for which $\sqrt{2+\sqrt{3+\sqrt{5}}}$ is a root.

5H\#) (i) Prove that no rational number satisfies $x^{4}-16 x^{2}+4=0$.
(Hint: Use proof by contradiction exactly as you did in the proof that $\sqrt{2}$ is irrational.)
(ii) Use part (i) to prove that $\sqrt{5}+\sqrt{3}$ is irrational.
6^{*}) (i) Show that the real number with decimal expansion $113.254 \overline{467}$ (that is, with 467 repeated) is rational. (Hint: Consider the sum of a certain geometric progression.)
(ii) Calculate, by hand, the decimal expansion of the rational number $\frac{2041}{495}$. By looking at the remainders at each step show that the decimal expansion must, by necessity, repeat.
(iii) Verify informally (so no rigorous proof is required) that a real number is rational if, and only if, its decimal expansion either terminates or repeats.
(iv) Verify informally that if a and b are real numbers, with $a<b$ then there exists a rational number c with $a<c<b$ and there exists an irrational number d with $a<d<b$.
(v) Verify informally that if a and b are real numbers, with $a<b$ then there exists infinitely many rational numbers c with $a<c<b$ and there exists infinitely many irrational numbers d with $a<d<b$.

7\#) Using the Properties 1-5 of the real numbers, and the results derived from them in the notes, give justifications for each step in the argument that follows:

Claim $(-1)(-1)=1$
Solution.
Put your reasons below

$$
\begin{aligned}
& 0=1+(-1), \\
& -1 \times 0=-1(1+(-1)), \\
& 0=(-1) 1+(-1)(-1), \\
& 0=-1+(-1)(-1), \\
& 1+0=1+(-1+(-1)(-1)), \\
& 1=(1+(-1))+(-1)(-1), \\
& 1=0+(-1)(-1), \\
& 1=(-1)(-1) .
\end{aligned}
$$

8) Prove the result stated in the notes as Derived Property D:

$$
\text { For all } a, b \in \mathbb{R}, \quad(-a) b=-(a b) \text {. }
$$

9) Use Properties 1-9 of the real numbers to prove that

$$
\text { if } c \leq 0 \text { and } a \geq b \text { then } a c \leq b c
$$

$10 \#)$ Find the glbs and the lubs of the following subsets of \mathbb{R}, or state that the glbs and the lubs do not exist. (You need not justify your answers.)
(i) \mathbb{N}_{0},
(ii) \mathbb{Q},
(iii) $\{6\}$,
(iv) $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$,
(v) $(-1,3]$,
(vi) $\{2,2.2,2.22,2.222,2.2222, \ldots\}$.
11^{*}) Draw graphs of the following functions
i) $y=|x-3|$
ii) $y=|x+1|$
iii) $y=|x-3|+|x+1|$
iv) $y=|x+1|-|x-3|$
v) $y=2|x+1|-3|x-1|$.
$12 \#)$ Find the glbs and the lubs of the following subsets of \mathbb{R}, or state that the glbs and the lubs do not exist. (You need not justify your answers.)
(i) $\{x: 1<|x-3|<4\}$,
(ii) $\{|x-3|: 1<x<4\}$,
(iii) $\{x: 0 \leq|x+1|-|x-3| \leq 4\}$,
(iv) $\{|x+1|-|x-3|: 0 \leq x \leq 4\}$.

Make sure you understand how the sets in (i) and (ii) differ from each other, and similarly for those in (iii) and (iv).
$13 \#)$ Use the definition of $l u b$ to prove that 4 is the $l u b$ of $\{1,2,3,4\}$.

