
MATH20101 Real Analysis 2017-18

Exam 2017-18, Solutions and commonly seen problems

A1

(i) Prove, by verifying the ε - δ definition, that

lim
x→2

(
x3 − 3x2 + 6

)
= 2.

(ii) Prove the Product Rule for Limits : Assume that f and g are real valued
functions defined on a deleted neighbourhood of a ∈ R. Further assume
that limx→a f(x) = L and limx→a g(x) = M . Prove that

lim
x→a

f(x) g(x) = LM.

(You may assume that if limx→a h(x) = H then |h(x)| < |H| + 1 in
some deleted neighbourhood of a.)

(iii) Using the limit laws evaluate

lim
x→−1

x3 + 1

x3 − 4x2 − 2x+ 3

Solution

(i) Rough work Assume 0 < |x− 2| < δ, where δ > 0 is to be found. Consider

|f(x)− L| =
∣∣(x3 − 3x2 + 6

)
− 2
∣∣

=
∣∣x3 − 3x2 + 4

∣∣
= |x− 2|

∣∣x2 − x− 2
∣∣

< δ
∣∣x2 − x− 2

∣∣ .
Assume δ ≤ 1 when |x− 2| < δ ≤ 1 expands out as 1 < x < 3. Then, by

the triangle inequality,∣∣x2 − x− 2
∣∣ ≤ |x|2 + |x|+ 2 < 32 + 3 + 2 = 14,

since |x| < 3. Thus |f(x)− L| < 14δ which we demand ≤ ε. So we are led
to δ = min (1, ε/14). End of Rough work.
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Proof Let ε > 0 be given. Choose δ = min (1, ε/14) and assume 0 <
|x− 1| < δ. For such x we have, as in the Rough Work, that∣∣(x3 − 3x2 + 6

)
− 2
∣∣ < δ

∣∣x2 − x− 2
∣∣ ,

1 < x < 3 and |x2 − x− 2| ≤ 14. Thus∣∣(x3 − 3x2 + 6
)
− 2
∣∣ < 14δ ≤ 14

( ε
14

)
= ε.

Hence we have verified the definition of

lim
x→2

(
x3 − 3x2 + 6

)
= 2.

Alternatively You can further factor x2 − x− 2 = (x+ 1) (x− 2) so that

|f(x)− L| = |x− 2|2 |x+ 1| ≤ δ2 |x+ 1| .

Again δ ≤ 1 implies 1 < x < 3 and thus |x+ 1| < 4. So this time demand
that 4δ2 ≤ ε which leads to δ = min (1,

√
ε/2).

[6 marks]

(ii) Start with

|f(x) g(x)− LM | = |f(x) g(x)− Lg(x) + Lg(x)− LM | ,

“adding in zero”,

≤ |f(x) g(x)− Lg(x)|+ |Lg(x)− LM |

by the triangle inequality,

= |f(x)− L| |g(x)|+ |L| |g(x)−M |

By the assumption given in the question limx→a g(x) = M means there
exists δ1 > 0 such that

0 < |x− a| < δ1 ⇒ |g(x)| < |M |+ 1. (1)

Let ε > 0 be given.

The definition of limx→a g(x) = M means there exists δ2 > 0 such that,
if 0 < |x− a| < δ2 then

|g(x)−M | < ε

2 (|L|+ 1)
, (2)
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(where we have put a +1 in the denominator, 2 (|L|+ 1) , in case L = 0).

From the definition of limx→a f(x) = L there exists δ3 > 0 such that, if
0 < |x− a| < δ3 then

|f(x)− L| < ε

2 (|M |+ 1)
. (3)

Choose δ = min (δ1, δ2, δ3) > 0. Assume 0 < |x− a| < δ. For such x all
the three bounds (1), (2) and (3) hold.

Returning to result above

|f(x) g(x)− LM | ≤ |f(x)− L| |g(x)|+ |L| |g(x)−M |

<
ε

2M ′︸︷︷︸
by (3)

M ′
by (1)

+ |L| ε

2 (|L|+ 1)︸ ︷︷ ︸
by (2)

=

1

2
+

1

2
× |L|

(|L|+ 1)︸ ︷︷ ︸
<1

 ε < ε.

Thus we have verified the definition that limx→a f (x) g (x) = LM .
[9 marks]

(iii)

lim
x→−1

x3 + 1

x3 − 4x2 − 2x+ 3
= lim

x→−1

(x+ 1) (x2 − x+ 1)

(x+ 1) (x2 − 5x+ 3)

= lim
x→−1

x2 − x+ 1

x2 − 5x+ 3

=
limx→−1 (x2 − x+ 1)

limx→−1 (x2 − 5x+ 3)
by Quotient Rule∗

=
3

9
=

1

3
.

∗The Quotient Law is applicable since both limits limx→−1 (x2 − x+ 1)
and limx→−1 (x2 − 5x+ 3) exist with the second one non-zero.

Alternatively Though I had not wanted students to use L’Hôpital’s Rule
(why use differentiation when it is not necessary and it is also not a Limit
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Law as described in my notes) so many students used it I allowed it. Since

lim
x→−1

(
x3 + 1

)
= lim

x→−1

(
x3 − 4x2 − 2x+ 3

)
= 0

L’Hôpital’s Rule gives

lim
x→−1

x3 + 1

x3 − 4x2 − 2x+ 3
= lim

x→−1

3x2

3x2 − 8x− 2
=

3

3 + 8− 2
=

1

3
.

[5 marks]

Commonly seen errors.

i. Since we are looking at limits we cannot forget the “0 <” in 0 < |x− 1|.
There were incorrect application of the triangle inequality, e.g. |x2 − x− 2| ≤
|x|2 − |x| − 2. Note that x < 3 in this (false) upper bound gives 4, which is
an allowable upper bound but a false proof of a correct result will not get
the marks.

Similarly, some students started from 1 < x < 3 and just plugged the end
points of this interval, 1 and 3, into x2−x−2 claiming that the largest value,
of 4 when x = 3, was an upper bound for the quadratic. There are many
examples in the problem sheets where the maximum of a quadratic over an
interval does not occur at an end point so a proof of this claim was required.

ii In general students could either remember this proof or they could not.
Small errors were incorrectly placing the “Let ε > 0 be given” or again
forgetting the “0 <” in 0 < |x− a| < δ. Also, you had to justify why the
δ1, δ2 and δ3 exist.

iii It was important to tell me what Rule was being used. A surprising
number of students made simple errors, such as

lim
x→−1

(
x2 − x+ 1

)
= 1− 1 + 1 = 1,

i.e. not noticing the double negative in the middle.
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A2

(i) Show, by verifying the definition, that

g(x) =
x2

1 + x

is differentiable on R \ {−1} and find its derivative.

(ii) (a) State carefully Rolle’s Theorem.

(b) State carefully the Mean Value Theorem.

(c) Deduce the Mean Value Theorem from Rolle’s Theorem.

(iii) Prove that

ln (1 + x) < x− x2

2
+
x3

3

for x > 0.

Solution

(i) Let a 6= −1 be given. Consider

lim
x→a

x2

(1+x)
− a2

(1+a)

x− a
= lim

x→a

x2 (1 + a)− a2 (1 + x)

(x− a) (1 + x) (1 + a)

= lim
x→a

x2 − a2 + x2a− a2x
(x− a) (1 + x) (1 + a)

= lim
x→a

(x+ a) (x− a) + xa (x− a)

(x− a) (1 + x2) (1 + a2)

= lim
x→a

x+ a+ ax

(1 + x) (1 + a)

=
a2 + 2a

(1 + a)2
,

by the Quotient Rule, allowable since limx→a (x+ a+ ax) exists and

lim
x→a

(
1 + x2

) (
1 + a2

)
=
(
1 + a2

)2 6= 0
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for a 6= −1.

The limit exists so x2/(1 + x) is differentiable at a.

True for all a ∈ R\{−1} means it is differentiable on R\{−1} with
derivative (x2 + 2x)/(1 + x)2 .

[5 marks]

(ii) (a) Rolle’s Theorem states that if a function f is differentiable on the
open interval (a, b), continuous on the closed interval [a, b] and f(a) = f(b)
then there exists c : a < c < b such that f ′ (c) = 0.

[2 marks]

(b) The Mean Value Theorem states that if a function f is differentiable
on the open interval (a, b) and continuous on the closed interval [a, b] then
there exists c : a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
. (4)

[2 marks]

(c) Let f be a function differentiable on the open interval (a, b) and continu-
ous on the closed interval [a, b]. Define F (x) = f(x)− kx where k is chosen
such that F (a) = F (b), i.e.

k =
f(b)− f(a)

b− a
.

Apply Rolle’s Theorem to F to find c ∈ (a, b) : F ′ (c) = 0. That is f ′(c)−k =
0, which gives the required result (4).

[6 marks]

(iii) Define

f(t) = t− t2

2
+
t3

3
− ln (1 + t) ,

for t ≥ 0. Note that

f ′(t) = 1− t+ t2 − 1

1 + t
=

1 + t− t− t2 + t2 + t3 − 1

1 + t
=

t3

1 + t
.

In particular f ′(t) > 0 for all t > 0.

Given x > 0 apply the Mean Value Theorem to f on the interval [0, x] to
find c : 0 < c < x for which

f(x)− f(0) = f ′(c)x > 0.
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That is f(x) > f(0) = 0. This rearranges to required result.
[5 marks]

Commonly seen errors.

i. Many students misread their own work and cancelled x2a with a2x. This
led to a claimed derivative of 2a/(1 + a)2 ; yet you should never get the wrong
answer since you know from School days how to differentiate a quotient.

Many students started their answer writing

g′(a) = lim
x→a

x2

(1+x)
− a2

(1+a)

x− a
, (5)

but this is only true when the limit exists, and this is unknown at the start
of the solution. A phrase similar to ”The limit exists so x2/ (1 + x) is differ-
entiable at a.” is required later in the solution and then you can write (5).

ii.b. Too many students gave me Cauchy’s Mean Value Theorem. I accepted
this but there are more conditions, including g′(x) 6= 0 for all x ∈ (a, b) ,
which many students forgot.

ii.c. I accepted the proof of Cauchy’s Mean Value Theorem. Many students
started by saying ”Define F (x) = f(x)−kx such that F (a) = F (b)”. I asked
the obvious question ‘what is k?’

iii. I did not accept “f ′(t) > 0 for all t > 0 implies f is strictly increasing”
This claim requires a proof, which is the essence of this question. The proof
requires the Mean Value Theorem which is why the Mean Value Theorem is
the subject of the earlier part of the question.

You cannot answer part iii by calculating the Taylor Series and discard-
ing the powers greater than 3. You can answer the question by using Tay-
lor’s Theorem with Lagrange’s form of the error, though only two students
attempted this method.
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A3

(i) State the ε - δ definition that h : R→ R is continuous at a ∈ R.

(ii) Assume that g is defined on a deleted neighbourhood of a ∈ R and that
limx→a g (x) = L exists. Assume that f is defined on a neighbourhood
of L and is continuous at L. Prove that

lim
x→a

f(g (x)) = f(L)

Hint. Consider f first.

(iii) Calculate the Taylor polynomial

T6,0
(
(1 + x) cos2 x

)
.

Solution

i. h : R→ R is continuous at a ∈ R iff

∀ε > 0, ∃δ > 0,∀x : |x− a| < δ ⇒ |h(x)− h(a)| < ε.

[2 marks]

ii. Let ε > 0 be given. Since f is continuous at L there exists δ1 > 0 such
that,

|y − L| < δ1 ⇒ |f(y)− f(L)| < ε. (6)

Choose ε = δ1 in the definition of limx→a g(x) = L to find δ2 > 0 such
that

0 < |x− a| < δ2 ⇒ |g(x)− L| < δ1. (7)

Combine (6) and (7) (using g(x) in place of y in (6)) to get

0 < |x− a| < δ2 ⇒ |g(x)− L| < δ1

⇒ |f(g(x))− f(L)| < ε.

Thus we have verified the definition that

lim
x→a

f(g(x)) = f(L) .

[6 marks]
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(iii) If f(x) = (1 + x) cos2 x then

f (1)(x) = cos2 x− 2 (x+ 1) cosx sinx = cos2 x− (x+ 1) sin 2x.

Continuing,

f
(2)

(x) = −2 sinx cosx− sin 2x− 2 (x+ 1) cos 2x

= −2 sin 2x− 2 (x+ 1) cos 2x,

f (3)(x) = −4 cos 2x− 2 cos 2x+ 4 (x+ 1) sin 2x

= −6 cos 2x+ 4 (x+ 1) sin 2x,

f (4)(x) = 12 sin 2x+ 4 sin 2x+ 8 (x+ 1) cos 2x

= 16 sin 2x+ 8 (x+ 1) cos 2x,

f (5)(x) = 40 cos 2x− 16 (x+ 1) sin 2x,

f (6)(x) = −96 sin 2x− 32 (x+ 1) cos 2x.

Thus f(0) = 1, f (1)(0) = 1, f (2)(0) = −2, f (3)(0) = −6, f (4)(0) = 8,
f (5)(0) = 40 and f (6)(0) = −32. Hence

T6,0
(
(1 + x) cos2 x

)
= 1 + x− 2

x2

2!
− 6

x3

3!
+ 8

x4

4!
+ 40

x5

5!
− 32

x6

6!

= 1 + x− x2 − x3 +
1

3
x4 +

1

3
x5 − 2

45
x6.

[12 marks]

Commonly seen errors.

ii. Many students wrote ‘Choose δ1 = ε’ instead of ‘Choose ε = δ′1. Other
students looked at g first instead of f .

iii. There were many problems with differentiation, forgetting the negative
sign on differentiating cosx; forgetting the 2 on differentiating cos2 x; for-
getting how to differentiate a product such as (x+ 1) cosx sinx. This all
indicated a lack of practice.

9



Not so much an error, but not observing that

2 cosx sinx = sin 2x

makes the calculations longer (and more prone to error.) So, if you don’t
simplify the last term in

f (1)(x) = cos2 x− 2 (x+ 1) cosx sinx,

the next derivative is

f (2)(x) = −2 sinx cosx− 2 cosx sinx+ 2 (x+ 1) sin2 x− 2 (x+ 1) cos2 x

= −4 cosx sinx+ 2 (x+ 1) sin2 x− 2 (x+ 1) cos2 x.

Then

f (3)(x) = 4 sin2 x− 4 cos2 x+ 2 sin2 x− 2 cos2 x

+4 (x+ 1) sinx cosx+ 4 (x+ 1) cosx sinx

= 6 sin2 x− 6 cos2 x+ 8 (x+ 1) sinx cosx.

At each step we have more terms.

Note, writing
f(x)

(1 + x)
= cos2 x,

does not give any advantage. My guiding principle is that I do not like
fractions; differentiating quotients always leads to complicated expressions.
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A4

(i) Assume f is a bounded function on the interval [a, b].

(a) Define what is meant by saying that P is a partition of [a, b] .

(b) Define the

Upper integral

∫ b

a

f and Lower integral

∫ b

a

f,

not forgetting to define all the terms you use.

(c) Prove that the lower and upper sums satisfy

L(Q, f) ≤ U(R, f)

for any partitions Q and R of [a, b] .

(You may assume that L(P , f) ≤ U(P , f) for any partition P
while

L(P , f) ≤ L(D, f) and U(D, f) ≤ U(P , f)

whenever P ⊆ D.)

(d) Deduce that ∫ b

a

f ≤
∫ b

a

f.

(ii) Let f : [2, 8]→ R, x 7→ 1/x3 and, for every n ≥ 1, define the partition

Qn =
{

2ηi : 0 ≤ i ≤ n
}
,

where ηn = 4.

(a) Show that

L(Qn, f) =
15

64η (1 + η)
.

(You may assume that
∑n

i=1 x
i = x (1− xn) / (1− x) .)

(b) Prove, by verifying the definition, that f is integrable over [2, 8]
and find the value of the integral.

(You may assume that U(Qn, f) = 15η2/64 (1 + η).)
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Solution A4

(i) (a) A partition of an interval [a, b] is a set P = {x0, x1, ...xn} where
a = x0 < x1 < x2 < ... < xn = b. [1 mark]

(b) The Upper integral is∫ b

a

f = glb {U(P , f) : P a partition of [a, b]} ,

and the Lower integral is∫ b

a

f = lub {L(P , f) : P a partition of [a, b]} .

Here

U(P , f) =
n∑

i=1

Mi (xi − xi−1) where Mi = lub {f(x) : x ∈ [xi−1, xi]} ,

and

L(P , f) =
n∑

i=1

mi (xi − xi−1) where mi = glb {f(x) : x ∈ [xi−1, xi]} ,

where P = {xi}0≤i≤n.
[4 marks]

(c) Given two partitions Q and R then Q ⊆ Q ∪R and R ⊆ Q∪R. So

L(Q, f) ≤ L(Q∪R, f) by assumption,

≤ U(Q∪R, f) by assumption,

≤ U(R, f) by assumption again.

[3 marks]

(d) Fix R and vary Q. We thus see that U(R, f) is an upper bound for

{L(Q, f) : Q}. Yet
∫ b

a
f is the least of all upper bounds and thus less than

the upper bound U(R, f), i.e.

U(R, f) ≥
∫ b

a

f.
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Now vary R and see that
∫ b

a
f is a lower bound for {U(R, f) : R}. Yet∫ b

a
f is the greatest of all lower bounds, so greater than the lower bound

∫ b

a
f,

i.e. ∫ b

a

f ≤
∫ b

a

f

as required. [3 marks]

(ii) (a) Let f : [2, 8]→ R, x 7→ 1/x3. With the partitionQn = {2ηi : 0 ≤ i ≤ n}
the sub-intervals are [xi−1, xi] = [2ηi−1, 2ηi] which have width 2 (ηi − ηi−1) .
The function f is decreasing so it is minimum on [2ηi−1, 2ηi] at 2ηi. Thus

L(Qn, f) =
n∑

i=1

2
(
ηi − ηi−1

) 1

(2ηi)3
=

1

22

(
1− η−1

) n∑
i=1

1

(ηi)2

=
1

4

(
1− η−1

) n∑
i=1

(
1

η2

)i

=
1

4

(
1− η−1

) 1

η2
1− η−2n

1− η−2

=
1

4

(
1− η−1

) 1

η2
1− (1/4)2

(1− η−1) (1 + η−1)

having used ηn = 4. Thus

L(Qn, f) =
15

64η (1 + η)
.

[7 marks]

(b) For every n ≥ 1 we get

15

64η (1 + η)
= L(Qn, f) ≤

∫ 6

2

f ≤
∫ 6

2

f ≤ U(Qn, f) =
15η2

64 (1 + η)
.

Let n → ∞ when η = 41/n → 1, to see that we must have equality in

the centre, i.e.
∫ 8

2
f =

∫ 8

2
f , and so the function in integrable over [2, 8]. The

common value, 15/128, is therefore the value of the integral.
[2 marks]
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Commonly seen errors.

i. Many students could not give the definition of a partition; forgetting it is
basically a finite subset of the interval, with the end points of the interval in
the set.

Students often interchanged lub and glb in the definitions; if you could
recall some of the diagrams I drew in lectures and in the notes that might
have helped. Without the correct definitions it was hard to give the required
proof in part i.d.

ii. Many students gave (something looking like) the correct result

L(Qn, f) =
n∑

i=1

2
(
ηi − ηi−1

) 1

(2ηi)3

but then had problems summing this, even given the formula for summing
a geometric series. This was a problem with algebraic manipulation and
indicated a lack of practice.
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