
MATH10242 Sequences and Series:

Solutions 8, for exercises for week 9 Tutorials

Question 1: Use partial fractions to find:
∞∑
n=1

1

4n2 − 1
.

Solution: Write as partial fractions,

1

4n2 − 1
=

A

2n+ 1
+

B

2n− 1
=

(2n− 1)A+ (2n+ 1)B

4n2 − 1
.

From this we get A+B = 0 and B − A = 1; thus B = 1/2 and A = −1/2. Thus

t∑
n=1

1

4n2 − 1
=

t∑
n=1

1

2

(
1

2n− 1
− 1

2n+ 1

)

=
1

2

((
1

1
− 1

3

)
+

(
1

3
− 1

5

)
+ · · ·+

(
1

2t− 1
− 1

2t+ 1

))
.

The intermediate terms cancel and we get

t∑
n=1

1

4n2 − 1
=

1

2

(
1− 1

2t+ 1

)
.

[[More formally:

t∑
n=1

1

4n2 − 1
=

t∑
n=1

1

2

(
1

2n− 1
− 1

2n+ 1

)

=
1

2

(
t∑

n=1

1

2n− 1
−

t∑
n=1

1

2n+ 1

)

=
1

2

(
t∑

n=1

1

2n− 1
−

t+1∑
n=2

1

2n− 1

)
,

having changed the ’variable of summation’ in the second sum. You could do this in two
steps, change from n to m = n+ 1, and then relabel m as n. Then most terms of the two
sums cancel out, leaving

t∑
n=1

1

4n2 − 1
=

1

2

(
1

1
− 1

2t+ 1

)
as seen before.]]

Hence
∞∑
n=1

1

4n2 − 1
= lim

n→∞

1

2

(
1− 1

2t+ 1

)
=

1

2
.

As was mentioned in lectures, it is important in these questions to only do the rear-
ranging of terms for a finite sum. Only after doing that can you take the limit.
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Question 2: Test the series below for convergence or divergence using the tests indicated.
For the Comparison Test you need to decide whether you are expecting convergence (in
which case you need to find a convergent series

∑
bn with bn ≥ an for all n) or divergence

(in which case you need to find a divergent series
∑
bn with bn ≤ an for all n).

(a) Comparison Test

(i)
∑
n≥1

n+ 1

n2 + 2
, (ii)

∑
n≥1

3n2 + 2

n4 + 4
, (iii)

∑
n≥1

1

2n + n2
, (iv)

∑
n≥2

1

lnn
.

(b) Ratio Test

(v)
∑
n≥1

n3

3n
, (vi)

∑
n≥1

3n

n!
, (vii)

∑
n≥1

nn

n!
, (viii)

∞∑
n=1

n!

nn
, (ix)

∞∑
n=1

n+ 1

n2 + 2
.

[Remark: you may use that limn→∞
(
1 + 1

n

)n
= e.]

Solutions:
(a) Comparison Test

As with sequences, identify the fastest-growing terms and look for what simpler series
this new one is “essentially like”. Then try to make the comparison with that simpler
series (at this point, although there’s usually not so much choice in which series to compare
to, there are generally many ways of making that comparison, so quite likely you won’t
have made the comparisons in exactly the way they are done here).

(i)
n+ 1

n2 + 2
≥ n

n2 + 2
=

1

n+ 2/n
≥ 1

n+ 2
.

But ∑
n≥1

1

n+ 2
=
∑
n≥3

1

n

diverges, so by the Comparison Test (CT)∑
n≥1

n+ 1

n2 + 2

also diverges.

(ii)

0 ≤ 3n2 + 2

n4 + 4
≤ 3n2 + 2

n4
≤ 3n2 + 2n2

n4
=

5

n2
.

But
∑

n≥1 1/n2 converges by 9.1.4 and hence so does
∑

n≥1 5/n2 (see 9.1.5). So, by the
CT our series ∑

n≥1

3n2 + 2

n4 + 4

converges.
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(iii)
1

2n + n2
≤ 1

2n
.

Since
∑

n≥1 1/2n is a convergent Geometric Series (8.1.1), so does our series, by the CT.

(Comparison with
∑

1
n2 also works.)

(iv) Since 0 ≤ 1
ln(n)

≥ 1
n
,
∑

n≥2
1

logn
diverges by the CT and comparison with the

Harmonic Series (Section 8.1).

(b) Ratio Test (Note that, since all the terms here are positive, we don’t need the
modulus signs.)

(v) For
∑

n≥1 n
3/3n, we take an = n3/3n and compute:∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)3

3n+1

3n

n3
=

(n+ 1)3

n3

1

3
=

(1 + 1/n)3

1

1

3
→ 1

3
< 1

as n→∞. So, by the Ratio Test (RT), the series
∑

n≥1 n
3/3n converges.

(vi) Here an = 3n/n!, so ∣∣∣∣an+1

an

∣∣∣∣ =
3n+1

(n+ 1)!

n!

3n
=

3

n+ 1
→ 0,

as n→∞. So, by the RT, the series
∑

n≥1 3n/n! converges.

(vii) Here an = nn/n!, so∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)n+1

(n+ 1)!

n!

nn
=

(n+ 1)n(n+ 1)

(n+ 1)!

n!

nn
=

(n+ 1)n

nn
= (1 + 1/n)n → e,

as n→∞ (where we used the hint). As e > 1 this implies that
∑

n≥1 n
n/n! diverges.

(viii)
∑∞

n=1 n!/nn. By taking the reciprocal of Part (iii) we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
1

e
< 1

so the series converges.

(ix)
∑∞

n=1(n+ 1)/(n2 + 2). Of course, by part (i) we know this diverges, but the point of
the question is to illustrate that the Ratio Test is not useful for comparing polynomials.

Here∣∣∣∣an+1

an

∣∣∣∣ =
n+ 2

(n+ 1)2 + 2
· n

2 + 2

n+ 1
=

(n+ 2)(n2 + 2)

(n2 + 2n+ 2)(n+ 1)
=

(1 + 2
n
)(1 + 2

n2 )

(1 + 2
n

+ 2
n2 )(1 + 1

n
)
.

Thus, by the AoL

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
(1 + 0)(1 + 0)

(1 + 0)(1 + 0)
= 1.

So, you cannot draw any conclusion.

4



Question 3: (a) Prove that if
∑∞

n=1 an converges and
∑∞

n=1 bn diverges then
∑∞

n=1(an +
bn) diverges.

(b) Suppose that
∑∞

n=1(an + bn) converges and that an ≥ 0 and bn ≥ 0 for all n ∈ N.
Prove that

∑∞
n=1 an and

∑∞
n=1 bn both converge.

(c) In part (b), why did we need an ≥ 0 and bn ≥ 0?

Solutions: (a) Suppose, for a contradiction, that
∑

n≥1(bn +an) converges. Then so does∑
n≥1−an = (−1)

∑
n≥1 an by 8.1.5(b). Thus so does∑

n≥1

bn =
∑
n≥1

(bn + an) + (−1)
∑
n≥1

an

by 8.1.5(a). This is a contradiction and so
∑

n≥1(bn + an) diverges.

[[That is a slightly sneaky proof. You can also do it direct from the definition, though it
would take longer.]]

(b) First proof: We use the boundedness theorem 9.1.1 twice. First, as an+bn ≥ 0 ∀ n ∈ N,
that theorem says that since

∑
(an + bn) converges, the partial sums are bounded, say∑N

1 (an + bn) ≤ T for all N ≥ 1. But as bn ≥ 0 we have an ≤ (an + bn) ∀ n ∈ N we get∑N
1 an ≤ T for all N ≥ 1. So, by 9.1.1 again

∑
an converges.

Second Proof: Here is a slight generalisation that can be useful:

Lemma. Suppose that
∑∞

n=1(an + bn) converges and there exists some N ∈ N such that
an ≥ 0 and bn ≥ 0 for all n ≥ N . Then both

∑
n≥1 an and

∑
n≥1 bn converge.

Proof. In this case, we only worry about the sequences
∑

n≥N an and
∑

n≥N(an + bn).
By 9.1.3 (that is, Question 4(b))

∑
n≥N(an + bn) still converges. But now it is a sum of

positive integers, so we can apply 9.1.1. So, let

un = (aN + bN) + (aN+1 + bN+1) + · · · (an + bn)

for n ≥ N . By 9.1.1, (un) is bounded above. Since bn ≥ 0 for all n ≥ N , we see that

sn = aN + aN+1 + · · · an ≤ un

and so it is also bounded.

Hence by 9.1.1 the series
∑

n≥N an is convergent. Hence so is
∑

n≥1 an by 9.1.3.

(b) As you might guess, the result fails if we allow some negative numbers. For example,
take an = 1 for all n; so

∑
n≥1 1 certainly diverges. But if bn = −1 for all n then again∑

n≥1 bn diverges, but ∑
n≥1

(an + bn) =
∑
n≥1

0 = 0

converges.
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Question 4: (a) Prove Theorem 8.1.5(ii): Suppose that
∑∞

n=1 an = s and that λ is any
real number. Prove that the series

∑∞
n=1 λan converges with sum λs.

(b) Prove 9.1.3: Given N ≥ 1 and a series
∑

n≥1 an, then
∑

n≥1 an converges ⇐⇒∑
n≥N an converges.

Solutions: (a) We are given that
∑∞

n=1 an = s and that λ ∈ R. Thus the partial
sums sn = a1 + · · · + an have limn→∞ sn = s. By the AoL for sequences tn = λsn has
limn→∞ tn = λs. But, the tn = λa1 + · · ·+ λan are the partial sums for

∑∞
n=1 λan. Hence

∞∑
n=1

λan = lim
n→∞

tn = λs.

(b) If you convert this into a question about sequences you will find it is really just 4.1.3.
Here are the details.

Let sn = a1 + · · · an be the partial sums for
∑

n≥1 an and let tn = aN + · · · an be the
partial sums for

∑
n≥N an (where I either just start the sequence at n = N or declare

t1 = t2 = · · · = tN−1 = 0).

Set X = a1 + · · ·+ aN−1. Then tn = sn−X for all n ≥ N . Thus limn→∞ sn = ` ⇐⇒
limn→∞ tn = `−X, as in 4.1.3. So, certainly limn→∞ sn exists ⇐⇒ limn→∞ tn exists.

Question 5∗: (a) Suppose that {an, bn : n ≥ 1} are all positive and that

lim
n→∞

an
bn

= `

exists. Prove that if
∑∞

n=1 bn converges then
∑∞

n=1 an converges.

(b) What happens in (b) if we allow negative terms? [You might find this easier after
next week’s lectures.]

Solutions: (a) First proof: Taking ε = 1 we can find N such that, if n ≥ N then

an
bn
≤ `+ 1.

Equivalently, an ≤ (`+ 1)bn.
Now,∑

n≥1

bn converges ⇒
∑
n≥N

bn converges

⇒ the sequence tn = bN + · · ·+ bn is bounded for n ≥ N by 9.1.1

⇒ (`+ 1)tn = (`+ 1)bN + · · ·+ (`+ 1)bn is bounded for n ≥ N

⇒ aN + · · ·+ an is bounded for n ≥ N since aj ≤ (`+ 1)bj

⇒
∑
n≥N

an converges (by 9.1.1 again)

⇒
∑
n≥1

an converges (by 9.1.3 again).
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Alternative (and faster) proof, pointed out by a postgrad demonstrator: Since the sequence
an/bn is convergent, it is bounded above by M say. Then, for every n ≥ 1 we have
an/bn ≤ M , that is an ≤ Mbn. Since

∑∞
n=1 bn converges, so does

∑∞
n=1Mbn and hence,

by Comparison, so does
∑∞

n=1 an.

(b)∗ Here you can’t draw the same conclusion. It might be that
∑
bn converges but∑

an doesn’t. For instance, set bn = (−1)n/
√
n so, by the Alternating Series Test,

∑
bn

converges. Set an = 1/n. Now, the limit,

lim
n→∞

an
bn

= lim
n→∞

1√
n

= 0

exists, yet
∑
an diverges.
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