MATH10242 Sequences and Series: Exercises 4, for Week 5 Tutorials

As always, you must ensure that you understand how to do the non-starred questions.
Question 0 is the starter question, with solutions on the next page. Questions 1 and 2
both are key question types.

Question 0: By using theorems and examples from the lectures and earlier Examples
Sheets, find the limits of the following sequences. For parts (¢) and (d) you can quote
Lemma 4.1.2 (which we will cover soon).
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Question 1: By using theorems and examples from the lectures and earlier Examples
Sheets, find the limits of the following sequences.
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[Hint: For part (f), you may also need the following: If b, > 0 for all n and b, — b as
n — oo then /b, — Vb as n — oo. Proving this will be one of the exercises on next
week’s example sheet.]

Question 2: (a) Prove: Theorem 3.2.2. Let (ay,)n>1 be a null sequence and let (by)n>1
be a bounded sequence (not necessarily convergent). Then (ay - by)n>1 is a null sequence.

(b) True or false: Let (an)n>1 be a convergent sequence and let (by),>1 be a bounded
sequence (not necessarily convergent). Then (ay, - by)n>1 18 a convergent sequence.

Note that with a “true or false” question you must either prove it is true or find an
example showing that it is false.

Question 3*: Let (a,),>1 be the sequence defined inductively by a; = 1, ay = 3 and,
forn > 1,
Q42 = Qpy1 + Q.

(So (an)n>1 is like the Fibonacci sequence except that it starts differently.)
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Prove by induction that Vn > 1, a, = 0" + ™.
(b) Hence find
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Extra Question™ for Week 5: Let x be a real number satisfying 0 < = < 1. The aim
of this question is to prove that lim, .., 2™ = 0.

(a) Prove that (z"),>1 is a convergent sequence and that if £ is the limit of this sequence,
then 0 < /¢ < 1.

We want to show that £ = 0 so, for the rest of the question, and aiming for a contradiction,
suppose that £ > 0.

(b) Prove that, for any € > 0 we can find N such that ¢ < 2 </ +¢.

(¢) (The punch line) Now we want to mess around with € (and hence N) to show that
for & small enough we have (¢ + &)z < ¢ and hence ¥ < £. This will give the desired
contradiction. So, it remains to prove:

(¥) Let e = - (£ — 1) Prove that ¢ > 0 and that, if y satisfies 0 < y < ¢ + &, then
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0 < yx < . Then use this to prove (c).



Solutions to Question 0.

(a) Just as we did in Example 3.2.4, we divide top and bottom by the leading power of x
(that is, by n®):
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Now, by Example 3.2.3, if r = 2 or r = 3 then 1/n” — 0 as n — oc. So, we can use the
Algebra of Limits Theorem to get
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(b) Using the same ideas as in (a) we see that
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Note that in this example, if you divided top and bottom by n® you would get an “n”
in the denominator, which would require extra work.

(c) Here one needs to use Lemma 4.1.2 which says that for 0 < ¢ < 1 we have ¢* — 0 as

n — 00. So notice that
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(d) In this case we need to divide top and bottom by 3™ in order to use Lemma 4.1.2.
But then combining that result with the Algebra of Limits Theorem, it all does work:
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