
Week 12

7.3 Cycles

Definition 7.3.1 If ρ is a permutation on A then ρ fixes a ∈ A if ρ (a) = a
and ρ moves a if ρ (a) 6= a.

Definition 7.3.2 Let a1, a2, ..., ar be distinct elements in A. If ρ is a per-
mutation that fixes all the other elements of A and if

ρ (a1) = a2, ρ (a2) = a3, ρ (a3) = a4, . . . , ρ (ar−1) = ar, ρ (ar) = a1,

i.e.
a1 7→ a2 7→ a3 7→ . . . 7→ ar 7→ a1,

then ρ is called a cycle of length r, sometimes called an r-cycle. A 2-cycle
is called a transposition.

The r-cycle above will be denoted by

(a1, a2, a3, ..., ar) .

Note that any ai can be taken as the “starting point”, so

(a1, a2, a3, ...., ar) = (a2, a3, ...., ar, a1) = .... = (ar, a1, ...., ar−2, ar−1) .

We can take r = 1 in the definition to get a 1-cycle, (a1). But such a
cycle fixes all elements of A and is thus the identity. Hence all 1-cycles equal
the identity, i.e. (a) = 1A for all a ∈ A.

Example 7.3.3 (i) Two permutations seen before were cycles. Namely,
ρ, π ∈ S5,

ρ =

(
1 2 3 4 5
4 2 1 3 5

)
= (1, 4, 3) ,

and

π =

(
1 2 3 4 5
2 3 4 5 1

)
= (1, 2, 3, 4, 5) .

(ii) In S3 all permutations happen to be cycles, namely

13, (2, 3) , (1, 2) , (1, 3) , (1, 3, 2) and (1, 2, 3) .
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The inverse of a cycle is obtained simply by writing it in reverse order.
So in S5,

ρ−1 = (1, 4, 3)−1 = (3, 4, 1) =

(
1 2 3 4 5
3 2 4 1 5

)
,

as seen before. And we can compose cycles written in this notation, remem-
bering to read from the right. So, in S5,

ρ ◦ π = (1, 4, 3) ◦ (1, 2, 3, 4, 5) =

(
1 2 3 4 5
2 1 3 5 1

)
,

as seen before. Again, we did this by noting that π moved 1 to 2 which ρ
then fixed. Next π moved 2 to 3 which ρ moved onto 1. Continue.

Example 7.3.4 In S3 we can represent all possible products in a table

◦ 13 (2, 3) (1, 2) (1, 3) (1, 3, 2) (1, 2, 3)

13 13 (2, 3) (1, 2) (1, 3) (1, 3, 2) (1, 2, 3)

(2, 3) (2, 3) 13 (1, 3, 2) (1, 2, 3) (1, 2) (1, 3)

(1, 2) (1, 2) (1, 2, 3) 13 (1, 3, 2) (1, 3) (2, 3)

(1, 3) (1, 3) (1, 3, 2) (1, 2, 3) 13 (2, 3) (1, 2)

(1, 3, 2) (1, 3, 2) (1, 3) (2, 3) (1, 2) (1, 2, 3) 13

(1, 2, 3) (1, 2, 3) (1, 2) (1, 3) (2, 3) 13 (1, 3, 2)

Note that because composition of functions is not commutative this table is
not symmetric about the leading diagonal (which makes it different to earlier
tables we have seen for (Zm,+) , (Zm,×) and (Z∗m,×)).

7.4 Factoring permutations

Question If we can compose permutations can we factor them?

Problem with this Question. In the last section we factored integers into
prime numbers. What is the equivalent of prime numbers for permutations?

Algorithm for factorization is best illustrated by an example.

Example 7.4.1 In S6 factor

π =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
.
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Solution

1. Take the smallest ‘unused’ element in {1, 2, 3, 4, 5, 6} , namely 1. See
what π does to 1 on repeated applications. It sends 1 to 5. Then π
sends 5 to 4. Next π sends 4 back to 1. Thus we have a cycle (1, 5, 4).

2. Next look at the smallest ‘unused’ element, i.e not in the cycles already
found. In this case it is 2. Then we what happens to 2 under repeated
applications of π, i.e. 2 7−→ 6 7−→ 2 and so we get another cycle (2, 6).

3. Repeat by taking the smallest element not in these two cycles. We
have only one such element 5, and we see this is fixed by π, and so we
get a 1-cycle (5), which we know is the identity. When there is at least
one non-identity cycle we can omit the identity (5).

4. When all elements are ‘used’, i.e. in some cycle, finish.

Hence
π = (1, 5, 4) ◦ (2, 6) ◦ (5) = (1, 5, 4) ◦ (2, 6) .

�

So in this way a permutation is factored into cycles, and thus cycles can
be considered the equivalent of prime numbers.

It can be proved that each new cycle contains no elements in any earlier
cycle. We can rewrite this statement using:

Definition 7.4.2 Two permutations ρ and π of a set A are disjoint if

i) every element moved by ρ is fixed by π and

ii) every element moved by π is fixed by ρ.

Example 7.4.3 In S5 the cycles (1, 5, 4) and (2, 6) are disjoint. The cycles
(1, 4, 3) and (1, 2, 3, 4, 5) are not disjoint.

The continued application of the factorization method above leads to

Theorem 7.4.4 A permutation on a finite set A is a product (composition)
of disjoint cycles.

3



Week 12

Proof not given, but see Appendix.

You should ask some questions about this algorithm. For example, what
happens if we start with a different number, say 2 in place of 1 in the above
example? We would get π = (2, 6) ◦ (1, 5, 4). But we know that composition
of permutations is not commutative in general so can we have

(2, 6) ◦ (1, 5, 4) = π = (1, 5, 4) ◦ (2, 6)?

Yes!

Theorem 7.4.5 Disjoint permutations on a set commute.

Proof not given in course . �

Finally it can be shown that the factorization found by this method is
unique.

Aside Though the proof is not given here (see the appendix)
the idea is similar to the one used to prove that the factorization
of integers into primes. Use strong induction on the number of
elements moved by the permutation π. Write the permutation in
two ways as disjoint compositions

π = σ1 ◦ σ2 ◦ σ3 ◦ ... ◦ σs = ρ1 ◦ ρ2 ◦ ρ3 ◦ ... ◦ ρt.

Look at an element a moved by π. This must be moved by exactly
one σi and ρj from each side. Relabel so these are σ1 and ρ1. It
can be shown that two cycles arising from π which move the same
point must be identical, i.e. σ1 = ρ1 = τ say. So we have

τ ◦ σ2 ◦ σ3 ◦ ... ◦ σs = τ ◦ ρ2 ◦ ρ3 ◦ ... ◦ ρt.

Apply τ−1 to both sides to get

σ2 ◦ σ3 ◦ ... ◦ σs = ρ2 ◦ ρ3 ◦ ... ◦ ρt.

The permutation represented here moves fewer elements than did
π (it no longer moves the elements moved by τ .) So we can now
use induction to say that these two decompositions are identical,
i.e. s = t and the σi, 2 ≤ i ≤ s are the same as ρj, 2 ≤ j ≤ t = s
in some order.

Combining all the above results gives

Theorem 7.4.6 A permutation on a finite set A can be expressed as a prod-
uct of disjoint cycles uniquely apart from the order of the cycles.

Proof Not given.
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7.5 Orders of permutations

Definition 7.5.1 • The positive powers ρn of a permutation are de-
fined inductively by setting ρ1 = ρ and ρk+1 = ρ ◦ ρk for all k ∈ N.

• The negative powers of a permutation are defined by ρ−n = (ρ−1)
n

for all n ∈ N, i.e. taking positive powers (just defined) of the inverse
of ρ.

• Finally, we set ρ0 = 1A.

It can be shown by induction that powers satisfy the expected properties
of exponents, namely that

ρm+n = ρm ◦ ρn (1)

for all m,n ∈ Z.

The method described above of factorizing a permutation started by tak-
ing an element of A, repeatedly applying ρ until you returned to a when you
then have a cycle. This italicized sentence is an assumption, we have to show
that repeatedly applying ρ to a does, in fact, gets us back to a.

Lemma 7.5.2 Let ρ be a permutation on a non-empty finite set. There
exists m ≥ 1 for which ρm = 1A.

Proof Consider the set {ρj : j ≥ 0} which is a subset of all permutations
on A. Yet the set of all permutations on A is finite, (if |A| = n then the
number of all permutations is n!). Thus {ρj : j ≥ 0} is a finite set. Therefore
we must have repetition, i.e. ∃` > k ≥ 0 for which ρ` = ρk. Applying ρ−k

to both sides gives

ρ`−k = ρ` ◦ ρ−k by (1)

= ρk ◦ ρ−k since ρ` = ρk

= ρk−k again by (1)

= ρ0 = 1A by definition.

Thus we have found an m = `− k ≥ 1 for which ρm = 1A. �

Hence given a permutation on a finite set A along with a ∈ A then
ρm (a) = a, so repeated application of ρ on a leads back to a thus giving a
cycle. This is as required for our method of factorization.
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Example 7.5.3 Let A = {1, 2, 3, 4, 5, 6} and

π =

(
1 2 3 4 5 6
5 6 3 1 4 2

)
.

It is easy to check that π6 = 1A.

Be careful, for a given a ∈ A we may return to a on repeated application
of ρ with a power smaller than the m found above. For example, for π above
we have π6 = 1A so, choosing 4 ∈ A this means π6 (4) = 1A (4) = 4. But if
we apply π to 4 only three times we get

4→ 1→ 5→ 4.

So π3 (4) = 4.

Definition 7.5.4 The order or period of a permutation ρ of a finite set is
the least positive integer d such that ρd = 1A.

The order exists because we saw earlier that there exists m ≥ 1 for which
ρm = 1A. The order of ρ and the m found earlier are related in

Theorem 7.5.5 If the order of ρ is d then ρm = 1A if, and only if, d|m.

Proof (⇒) Assume ρm = 1A. By the division Algorithm write m = qd + r
for some integers q and 0 ≤ r ≤ d− 1. Then

1A = ρm = ρqd+r =
(
ρd
)q
ρr = (1A)q ρr = ρr.

But d is the least positive integer for which ρd = 1A and thus r = 0. That
is, m = qd and so d|m.

(⇐) Assume d|m. So m = dq for some q ∈ Z. But then

ρm =
(
ρd
)q

= (1A)q = 1A.

�

Example 7.5.6 In S4 find the orders of

π1 =

(
1 2 3 4
3 4 1 2

)
and π2 =

(
1 2 3 4
3 2 4 1

)
,
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Solution

π2
1 =

(
1 2 3 4
1 2 3 4

)
= 14,

and so the order of π1 is 2. But for π2

π2
2 =

(
1 2 3 4
4 2 1 3

)
,

π3
2 = π2 ◦ π2

2 =

(
1 2 3 4
1 2 3 4

)
= 14,

and so the order is 3. �

But what about finding the order of something a little larger? In S7

consider

π =

(
1 2 3 4 5 6 7
3 7 6 2 1 5 4

)
.

Then

π2 =

(
1 2 3 4 5 6 7
6 4 5 7 3 1 2

)
, π3 =

(
1 2 3 4 5 6 7
5 2 1 4 6 3 7

)
, ...

How long do we have to go on for? What if we had a permutation from
S100?

Suppose that
π = π1 ◦ π2 ◦ .... ◦ πm

is a decomposition into a product of disjoint permutations. Consider the
k-th power

πk = (π1 ◦ π2 ◦ .... ◦ πm)k .

Since the permutations on the right hand side are disjoint the composi-
tions commute, so they can be moved around to give

πk = πk
1 ◦ πk

2 ◦ .... ◦ πk
m.

Assume now that πk = 1A, so πk moves no elements. Because the permu-
tations are disjoint each of πk

1, πk
2, ...., πk

m move different elements and so
πk moves no elements if, and only if, each of πk

1, πk
2, ...., πk

m moves no ele-
ments, i.e. πk

i = 1A for all 1 ≤ i ≤ m. Let di be the order of πi for each
1 ≤ i ≤ m, then by the Theorem above πk

i = 1A for all 1 ≤ i ≤ m iff di|k for
all 1 ≤ i ≤ m. Finally, in searching for the order of π we want the least k
divisible by all the di. This leads to
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Definition 7.5.7 The lowest common multiple of integers m1,m2, ...,mt,
denoted by lcm (m1,m2, ...,mt) is the positive integer f that satisfies

1) m1|f,m2|f, ...,mt|f,

2) if m1|k, m2|k, ..., mt|k then f |k.

In words, (1) says that f is a common multiple of the integers, while (2)
says that it is the least of all possible positive common multiples.

Compare the definition to that of gcd.

Thus we see that the following result is not unreasonable.

Theorem 7.5.8 Suppose that

π = π1 ◦ π2 ◦ .... ◦ πm

is a decomposition into a product of disjoint permutations, then the order of π
is the least common multiple of the orders of the permutations π1, π2, ...., πm.

Proof not given but see the appendix.

Note In practice, given a permutation π we decompose it into a product of
disjoint cycles.

Question For what permutations is it easy to calculate the order?

Answer Cycles.

Theorem 7.5.9 The order of a cycle is equal to its length.

Proof Not given, but see the appendix.

Corollary 7.5.10 Suppose that

π = σ1 ◦ σ2 ◦ .... ◦ σm

is a decomposition into a product of disjoint cycles, then the order of π is the
least common multiple of the lengths of the cycles σ1, σ2, ...., σm.

Example 7.5.11 In S12 consider

π =

(
1 2 3 4 5 6 7 8 9 10 11 12
6 3 5 10 2 1 4 9 7 8 12 11

)
= (4, 10, 8, 9, 7) ◦ (2, 3, 5) ◦ (1, 6) ◦ (11, 12) .

The order equals lcm (5, 3, 2, 2) = 30.
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Example 7.5.12 What is the largest order of all permutations in S12?

Solution Need to find positive integers a, b, c, ... that sum to 12 but for which
lcm (a, b, c, ..) is as large as possible. Just search to find 12 = 3 + 4 + 5, when
lcm (3, 4, 5) = 60. So, for example

(1, 2, 3) ◦ (4, 5, 6, 7) ◦ (8, 9, 10, 11, 12)

=

(
1 2 3 4 5 6 7 8 9 10 11 12
2 3 1 5 6 7 4 9 10 11 12 8

)
has order 60. �

Example 7.5.13 S8. What is the order of

(1, 2, 4, 6, 8) ◦ (2, 3, 6) ◦ (6, 7)?

Solution CAREFUL, the cycles are not disjoint! We have to write this as a
product of disjoint cycles. In fact it equals

(1, 2, 3, 8) ◦ (4, 6, 7),

now a composition of disjoint cycles. The order is lcm (4, 3) = 12. �
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8 Groups

8.1 Binary Operations

Question, why, earlier in the course did we call (Sn, ◦), the set of permuta-
tions on n elements under composition, the Symmetric Group on n elements?

Definition 8.1.1 A binary operation on a set S is a function from the
ordered pairs of S × S to S. We will denote it in general as ∗, so for each
(a, b) ∈ S the function sends (a, b)→ a ∗ b, a value in S. Thus

∀a, b ∈ S, a ∗ b ∈ S.

If C ⊆ S we say that C is closed under ∗ iff

∀a, b ∈ C, a ∗ b ∈ C.

Example 8.1.2 Z20 is closed under ×20. But {[4]20 , [8]20 , [12]20 , [16]20} ⊆
Z20 is also closed, we can draw up a table

× [4]20 [8]20 [12]20 [16]20
[4]20 [16]20 [12]20 [8]20 [4]20
[8]20 [12]20 [4]20 [16]20 [8]20
[12]20 [8]20 [16]20 [4]20 [12]20
[16]20 [4]20 [8]20 [12]20 [16]20

Example 8.1.3 1.

2. The set of all permutations on a set of n elements is closed under
composition ◦.

3. For each m ≥ 1 the set Zm (of congruence classes mod m) is closed
under multiplication modulo m.

4. For each m ≥ 1 the set Z∗m ⊆ Zm (of invertible congruence classes mod
m) is closed under multiplication modulo m.

Example 8.1.4 (Only given if time) Earlier we introduced bijections

ρa : Z∗m → Z∗m, ρa ([r]m) = [ar]m ,

for each [a]m ∈ Z∗m. In the particular case of m = 8 we found four permuta-
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tion, written in cycle form as

ρ1 = 1Z∗
8
, ρ3 = (1, 3) ◦ (5, 7) , ρ5 = (1, 5) ◦ (3, 7) and ρ7 = (1, 7) ◦ (3, 5) .

These are just four of the 24 possible permutations on the four elements
{1, 3, 5, 7}. Yet

ρb ◦ ρa ([r]8) = ρb (ρa ([r]8)) = ρb ([ar]8)

= [b (ar)]8 = [(ba) r]8
= ρba ([r]8) .

Hence ρb ◦ ρa = ρba. Thus {ρ1, ρ2, ρ3, ρ4} is a closed set of permutations in
which case we can draw up their multiplication table:

◦ ρ1 ρ3 ρ5 ρ7
ρ1 ρ1 ρ3 ρ5 ρ7
ρ3 ρ3 ρ1 ρ7 ρ5
ρ5 ρ5 ρ7 ρ1 ρ3
ρ7 ρ7 ρ5 ρ3 ρ1

A binary operation might satisfy certain properties that we have seen
before (PJE p.18 for real numbers and p.71 for sets).

Definition 8.1.5 (i) A binary operation is commutative if,

∀a, b ∈ S, a ∗ b = b ∗ a,

(ii) A binary operation is associative if,

∀a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c) .

Definition 8.1.6 Given a set S and binary operation ∗ on S we say that
e ∈ S is an identity if, for all a ∈ S,

e ∗ a = a and a ∗ e = a.

We have to check both e ∗ a and a ∗ e since we are not assuming that ∗ is
commutative.

Example 8.1.7 {[4]20 , [8]20 , [12]20 , [16]20 ,×}. Looking back at the table above
we see that the identity is [16]20 .
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This last example is important, it shows that we get identities different
to 1 and 0!

Note the use of the word “an” in the definition. But

Lemma 8.1.8 Suppose that ∗ is a binary operation on a set S and that (S, ∗)
has an identity. The identity is unique.

Proof Suppose that e and f are two identities on S. Then

e = e ∗ f since f is an identity (used here on the right),

= f since e is an identity (used here on the left).

�
So we can now talk about “the” identity.

If, in the multiplication table for (S, ∗) , we can find an element whose
row (and whose column) is identical to the heading row (respectively heading
column), then we have found the identity.

Definition 8.1.9 Let S be a set with a binary operation ∗ and an identity
element e ∈ S. We say that an element a ∈ S is invertible if there exists
b ∈ S such that

a ∗ b = e and b ∗ a = e.

We say that b is the inverse of a, and normally write b as a−1.

Example 8.1.10 In (Z6,×) the element [2]6 has no inverse.

Solution If [2]6 had an inverse, i.e. [b]6 then

[2]6 [b]6 = [1]6 .

Multiply both sides by [3]6 to get

[6]6 [b]6 = [3]6 , i.e. [0]6 = [3]6 ,

since [6]6 = [0]6, a contradiction. �

The problem here is that 6 = 2 × 3 is composite. We have got round
this in two ways in this course. First we can look at (Zp,×) with p prime,
when every non-zero element has an inverse. The second way it to look at
(Z∗m,×) where we have simply thrown away all the elements that don’t have
an inverse!
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If, for an i ∈ S we can look in its row in the multiplication table and find
the identity in column j, say, and find in row j the identity in column i then
i and j are inverse to each other. If we can do this for every i ∈ S then every
element will have an inverse.

Example 8.1.11 {[4]20 , [8]20 , [12]20 , [16]20 ,×}

× [4]20 [8]20 [12]20 [16]20
[4]20 [16]20 [12]20 [8]20 [4]20
[8]20 [12]20 [4]20 [16]20 [8]20
[12]20 [8]20 [16]20 [4]20 [12]20
[16]20 [4]20 [8]20 [12]20 [16]20

Since the identity is [16]20 we note

[4]20 × [4]20 = [16]20 so [4]−120 = [4]20 ,

[8]20 × [12]20 = [16]20 so [8]−120 = [12]20 ,

[12]20 × [8]20 = [16]20 so [12]−120 = [8]20 .

(The inverse of the identity is always itself!)

Lemma 8.1.12 Assume that the binary operation ∗ on S is associative. As-
sume that (S, ∗) has an identity e and a ∈ S has an inverse. Then the inverse
is unique.

Proof If an element a has two inverses, b, c ∈ S say, then

a ∗ b = e and b ∗ a = e

a ∗ c = e and c ∗ a = e.

From these we keep b ∗ a = e and a ∗ c = e. These pieces of information are
combined in the following way,

b = b ∗ e = b ∗ (a ∗ c) since c is an inverse of a,

= (b ∗ a) ∗ c by associativity,

= e ∗ c since b is an inverse of a,

= c.

Thus b = c and the inverse is unique. �

So we can now talk about “the” inverse of an (invertible) element.

13



Week 12

8.2 Groups

Definition 8.2.1 Given a set G and binary operation ∗ we say that (G, ∗)
is a group if, and only if,

G1 G is closed under ∗,

G2 ∗ is associative on G,

G3 (G, ∗) has an identity element, i.e.

∃e ∈ G : ∀a ∈ G, e ∗ a = a ∗ e = a,

G4 every element of (G, ∗) has an inverse, i.e.

∀a ∈ G,∃a′ ∈ G : a ∗ a′ = a′ ∗ a = e.

We say that (G, ∗) is a commutative or abelian group (after Niels
Abel) if, and only if, it is a group and ∗ is commutative.

Recall that in the course we showed that Z∗n is closed under multiplication.
This was done by taking [a]n , [b]n ∈ Z∗n and showing that

([a]n [b]n)−1 = [b]−1n [a]−1n . (2)

What is important here is not the value of the inverse but that the product
[a]n [b]n has an inverse. For this implies [a]n [b]n ∈ Z∗n as required for closure.

But it can be shown that (2) holds in any group.

Proposition 8.2.2 Assume that (G, ∗) is a group. If x, y ∈ G then

(x ∗ y)−1 = y−1 ∗ x−1.
Notice how the order has changed.

Proof First note that (x ∗ y)−1 is, by definition, an inverse of x ∗ y.

Next note that

(x ∗ y) ∗
(
y−1 ∗ x−1

)
=

(
(x ∗ y) ∗ y−1

)
∗ x−1

using ∗ is associative

=
(
x ∗

(
y ∗ y−1

))
∗ x−1

again using ∗ is associative

= (x ∗ e) ∗ x−1

= x ∗ x−1

= e.
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So (x ∗ y)∗(y−1 ∗ x−1) = e. It is similarly shown that (y−1 ∗ x−1)∗(x ∗ y) = e.
Together these mean that y−1 ∗ x−1 is an inverse of x ∗ y.

Yet the inverse in a group is unique so the two inverses we have here must
be equal, i.e. (x ∗ y)−1 = y−1 ∗ x−1. �

Question But why do we call (Sn, ◦) the symmetric group?

Consider, as an example, n = 4. Think of a square in the plane, center
at the origin, with vertices at (1, 1) , (−1, 1) , (−1,−1) and (1,−1) , labelled
clockwise, 1,2,3 and 4. What symmetries does the square have? It has
rotational symmetries about the origin. If we rotate by π/2 in the clockwise
direction we see that corners map 1 → 2, 2 → 3, 3 → 4 and 4 → 1. So this
rotation can be represented by the cycle (1, 2, 3, 4).

In the other direction what would (1, 2) ◦ (3, 4) represent? It would be a
reflection in a line through the origin.

For Student: What are the permutations that represent the other symme-
tries of the square?

In this way we see that S4 contains the symmetries of the square. Hence
the use of the word “symmetry” in the name of (Sn, ◦).
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