2 Arithmetic

Part IV of PJE

2.1 Division

Definition 2.1.1 (p.140) A non-zero integer b divides integer a if there exists an integer c such that $a=b c$. We write $b \mid a$. We also say that a is a multiple of b.

This can be written as

$$
b \mid a \Leftrightarrow \exists c \in \mathbb{Z}: a=b c
$$

Some books will talk of b being a factor of a.
Example 2.1.2 So $2 \mid 8$ since $8=4 \times 2$. Also $-2 \mid 8$ since $8=(-4) \times-2$. Further $10 \mid 0$ since $0=0 \times 10$.

In fact, 0 is divisible by any non-zero integer.
What if b does not divide a ?
Example 2.1.3 Let $b=4043$ and $a=166361$.
Solution By long division,

$$
4043 \begin{array}{r}
41 \\
166361 \\
161720 \\
\hline 4641 \\
4043 \\
\hline 598
\end{array}
$$

So $166361=41 \times 4043+598$.
That we get a remainder, 598 here, happens in general. (You have to be quite lucky if, given two randomly chosen integers, one divides the other.)

Theorem 2.1.4 Division Theorem. Let a and b be integers with $b>0$. Then there exist unique integers q and r such that

$$
\begin{equation*}
a=b q+r \quad \text { and } \quad 0 \leq r<b . \tag{1}
\end{equation*}
$$

Proof p. 191 but I repeat it here. The proof comes in two parts, existance and uniqueness.

Proof of existence of q and r. A proof of two halves, $a>0$ and $a<0$ (nothing to prove if $a=0$!).
Assume $a>0$.
Define

$$
\mathcal{A}=\{k \in \mathbb{Z}: k \geq 0 \text { and } b k \leq a\} .
$$

The fact that $b \times 0=0 \leq a$ means that $0 \in \mathcal{A}$, in which case $\mathcal{A} \neq \varnothing$.

Aside Whenever we define a set we need to immediately show it is non-empty. We don't want to waste time proving results about an empty set!

Next $b \in \mathbb{Z}$ and $b>0$ combine to give $1 \leq b$. Thus if $k \in \mathcal{A}$ then

$$
\begin{aligned}
k & \leq b k & & \text { since } 1 \leq b \\
& \leq a & & \text { since } k \in \mathcal{A}
\end{aligned}
$$

Hence all elements $k \in \mathcal{A}$ are bounded, i.e. \mathcal{A} is a bounded non-empty set of integers. Thus \mathcal{A} is a finite set and it would take only a finite amount of time to find its maximum element, $q \in \mathcal{A}$, say. Note that q being the maximum element in \mathcal{A} means $q+1 \notin \mathcal{A}$.

Let $r=a-b q$. Note that $q \in \mathcal{A}$ means that $b q \leq a$ which rearranges to $r \geq 0$. We need to show that $r<b$.

Assume for contradiction that $r \geq b$. Then:

$$
\begin{aligned}
r \geq b & \Rightarrow a-b q \geq b \quad \text { by definition of } r \\
& \Rightarrow b(q+1) \leq a \quad \text { on rearranging } \\
& \Rightarrow q+1 \in \mathcal{A} \quad \text { by definition of } \mathcal{A} .
\end{aligned}
$$

But this contradicts the fact that $q=\max \mathcal{A}\left(=\max _{a \in \mathcal{A}} a\right)$. Hence the last assumption is false, and so $r<b$ as required.

Assume $a<0$. Apply the above argument to the positive $-a$ to find

$$
-a=b q_{1}+r_{1} \text { with } 0 \leq r_{1}<b .
$$

- If $r_{1}=0$ then $a=b\left(-q_{1}\right)$ and so (1) follows with $q=-q_{1}$ and $r=0$.
- If $0<r_{1}<b$ then

$$
a=-b q_{1}-r_{1}=-b\left(q_{1}+1\right)+\left(b-r_{1}\right),
$$

and so (1) follows with $q=-\left(q_{1}+1\right)$ and $r=b-r_{1}$. Note that $0<r_{1}<b$ implies that $0<r<b$ as required.

The proof continues...
Proof of Uniqueness. Assume that for some integers a and $b>0$ we can find two pairs $\left(q_{1}, r_{1}\right)$ and $\left(q_{2}, r_{2}\right)$ for which

$$
\begin{equation*}
a=b q_{1}+r_{1}=b q_{2}+r_{2} \tag{2}
\end{equation*}
$$

with $0 \leq r_{1}, r_{2}<b$.
Without loss of generality (w.l.o.g.), we may assume $r_{1} \leq r_{2}$, (so, if this doesn't hold, simply relabel the remainders) in which case

$$
0 \leq r_{1}=a-b q_{1} \leq r_{2}=a-b q_{2}<b .
$$

Even at their extremes of $r_{1}=0$ and $r_{2}=b-1$ the difference $r_{2}-r_{1}$ can be no larger than $b-1$, that is

$$
\begin{aligned}
0 & \leq\left(a-b q_{2}\right)-\left(a-b q_{1}\right)<b \\
\text { i.e. } 0 & \leq b\left(q_{1}-q_{2}\right)<b .
\end{aligned}
$$

From the first inequality $0 \leq b\left(q_{1}-q_{2}\right)$ with $b>0$ we deduce that $q_{1}-q_{2} \geq 0$.

From the second inequality $b\left(q_{1}-q_{2}\right)<b$ and $b>0$ we deduce $q_{1}-q_{2}<1$. But $q_{1}-q_{2}$ is an integer so $q_{1}-q_{2}<1$ means $q_{1}-q_{2} \leq 0$.

From $q_{1}-q_{2} \geq 0$ and $q_{1}-q_{2} \leq 0$ we conclude $q_{1}=q_{2}$. From (2) we then deduce $r_{1}=r_{2}$.

Definition 2.1.5 We call q the quotient and r the remainder.
Note that we demand that the remainder is non-negative.

Aside concerning the proof: In the proof we claim 'If \mathcal{A} is a finite set then it would take only a finite amount of time to find its maximum element'. An algorithm for such a search would be: take any two elements, compare and keep the largest, pick another element and compare these two. Continue.

This argument would not work for an infinite set. For example

$$
\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{n-1}{n}, \ldots\right\}
$$

is an infinite set bounded above (by 1) but which has no maximal element.

Example 2.1.6 What is the quotient and remainder on dividing $=-166361$ by $b=4043$?

Solution From the first part of this example we have, on multiplying by -1 ,

$$
\begin{aligned}
-166361 & =(-41) \times 4043-598 \\
& =(-42) \times 4043+4043-598 \\
& =(-42) \times 4043+3445,
\end{aligned}
$$

all because the remainder has to be non-negative. Thus $q=-42$ and $r=$ 3445.

Definition 2.1.7 (p.140) Let a and b be integers, at least one of which is non-zero. Then the greatest common divisor of a and b is the unique positive integer d such that
i) $d \mid a$ and $d \mid b$, i.e. d is a common divisor,
ii) if $c \mid a$ and $c \mid b$ then $c \leq d$, so d is the greatest of all such common divisors.

Notation We write gcd (a, b), or even just (a, b), for the greatest common divisor. (In lectures I will write (a, b), while in the notes I will keep to $\operatorname{gcd}(a, b))$.

Note In some books you will find hcf (representing highest common factor) in place of gcd.

Example 2.1.8 Calculate gcd (12, 30).
Solution The set of common divisors is

$$
D(12,30)=\{-6,-3,-2,-1,1,2,3,6\} .
$$

The greatest of all these divisors is 6 . Hence $\operatorname{gcd}(12,30)=6$.
Question Does the gcd of two integers always exist?

Definition 2.1.9 For $a \in \mathbb{Z}$, let $D(a)$ be the set of divisors of a, so

$$
D(a)=\{d \in \mathbb{Z}: d \mid a\} .
$$

Note that $1 \in D(a)$ so $D(a) \neq \varnothing$.
If $a=0$ then $D(0)=\mathbb{Z} \backslash\{0\}$ since every non-zero integer divides 0 .
If $a \neq 0$ then the largest divisor of a is $|a|$ so max $D(a)=|a|$.
Definition 2.1.10 For $a, b \in \mathbb{Z}$ let

$$
D(a, b)=D(a) \cap D(b)
$$

be the set of common divisors of a and b.
Note that $1 \in D(a, b)$ so $D(a, b) \neq \varnothing$. Thus, if $\max D(a, b)$ exists then $\operatorname{gcd}(a, b)=\max D(a, b)$.

Special cases.

- If $a=b=0$ then $D(0,0)=D(0)=\mathbb{Z} \backslash\{0\}$. This has no maximal element so in this case we define $\operatorname{gcd}(0,0)=0$.
- If $a=0$ and $b \neq 0$ then $D(0)=\mathbb{Z} \backslash\{0\}$ and so we must have $D(b) \subseteq$ $D(0)$. Thus

$$
D(0, b)=D(0) \cap D(b)=D(b),
$$

a set with a maximal element $|b|$. Therefore

$$
\operatorname{gcd}(0, b)=\max D(0, b)=\max D(b)=|b|
$$

- If $a \neq 0$ and $b \mid a$ then $D(b) \subseteq D(a)$ since every divisor of b is a divisor of a. Thus

$$
D(a, b)=D(a) \cap D(b)=D(b) .
$$

Also, $a \neq 0$ and $b \mid a$ imply that $b \neq 0$. Therefore

$$
\operatorname{gcd}(a, b)=\max D(a, b)=\max D(b)=|b| .
$$

Theorem 2.1.11 For all $a, b \in \mathbb{Z}$, at least one of which is non-zero, the $\operatorname{gcd}(a, b)$ exists.

Proof p. 140 but I give it here.
Assume without loss of generality, (w.l.o.g.) that a is non-zero.
If $f \in D(a)$ then by definition $f \mid a$ which means that $f q=a$ for some $q \in \mathbb{Z} \backslash\{0\}$.

Yet $q \in \mathbb{Z} \backslash\{0\}$ implies $|q| \geq 1$.
Thus

$$
|a|=|f q|=|f||q| \geq|f| .
$$

Turn this around and look upon this as bound on $|f|$ to see that all elements $f \in D(a)$ are bounded in modulus by $|a|$. Hence $D(a)$ is a bounded set. Since $1 \in D(a)$ it is non-empty. Therefore $D(a)$ is a non-empty, bounded set of integers and is thus finite.

Since $D(a, b)=D(a) \cap D(b) \subseteq D(a)$, we have that $D(a, b)$ is also a finite set. Again, you can find the maximal element of a finite set in finite time so we have that max $D(a, b)$ exists. Yet by definition $\operatorname{gcd}(a, b)=\max D(a, b)$ and so the gcd exists.

Note that $D(-a)=D(a)$ so $D(-a, b)=D(a, b)$ and thus

$$
\operatorname{gcd}(-a, b)=\operatorname{gcd}(a, b) .
$$

Similarly for $\operatorname{gcd}(a,-b)$ and $\operatorname{gcd}(-a,-b)$.
Question How do we find the greatest common divisor?

Theorem 2.1.12 For $a, b \in \mathbb{Z}$, at least one of which is non-zero, write

$$
a=b q+r
$$

for some $q, r \in \mathbb{Z}$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Proof p. 202 but I give the proof here. It suffices to show that $D(a, b)=$ $D(b, r)$, for then

$$
\operatorname{gcd}(a, b)=\max D(a, b)=\max D(b, r)=\operatorname{gcd}(b, r) .
$$

To show set equality $D(a, b)=D(b, r)$ we need to show both

$$
D(a, b) \subseteq D(b, r) \quad \text { and } \quad D(a, b) \supseteq D(b, r)
$$

Case 1. To show that $D(a, b) \subseteq D(b, r)$.
Assume that $s \in D(a, b)$ is given, so $s \mid a$ and $s \mid b$. This means that $a=m s$ and $b=n s$ for some $m, n \in \mathbb{Z}$. But then

$$
r=a-b q=m s-n s q=(m-n q) s
$$

Yet $m-n q \in \mathbb{Z}$ and so $s \mid r$. Thus we have both $s \mid b$ and $s \mid r$, i.e. $s \in D(b, r)$. Hence $D(a, b) \subseteq D(b, r)$.

Case 2 To show that $D(a, b) \supseteq D(b, r)$. I leave this to the student.
Therefore $D(a, b)=D(b, r)$ as required.

Example 2.1.13 Apply Theorem 2.1.12 to 1561 and 217.
Solution $1561=7 \times 217+42$. Thus, by Theorem 2.1.12,

$$
\operatorname{gcd}(1561,217)=\operatorname{gcd}(217,42) .
$$

Important observation The sizes of the numbers have been reduced. In particular the largest integer, a say, has been replaced by one strictly smaller than the other original integer, b.
Important idea A strictly decreasing sequence of non-negative numbers must reach 0 at some point. when the process terminates.
Conclusion If we repeatedly apply Theorem 2.1.12 the process will end.
Example 2.1.14 2.1.13 continued. Calculate gcd $(1561,217)$.
Solution From $217=5 \times 42+7$ we deduce that

$$
\operatorname{gcd}(217,42)=\operatorname{gcd}(42,7)
$$

Continuing, $42=6 \times 7+0$, which is when the process terminates. We could then quote Theorem 2.1.12, that $\operatorname{gcd}(a, 0)=|a|$, which here gives

$$
\operatorname{gcd}(42,7)=\operatorname{gcd}(7,0)=7
$$

Alternatively, Theorem 2.1.12 also says that if $a \neq 0$ and $b \mid a$ then $\operatorname{gcd}(a, b)=$ $|b|$. And since $7 \mid 42$ this immediately gives $\operatorname{gcd}(42,7)=7$.

Example 2.1.15 Calculate gcd $(166363,4043)$.

We have seen earlier that $166361=41 \times 4043+598$ thus

$$
\operatorname{gcd}(166361,4043)=\operatorname{gcd}(4043,598)
$$

Continuing,

$$
\begin{array}{ll}
4043=6 \times 598+455, & \text { so } \operatorname{gcd}(4043,598)=\operatorname{gcd}(598,455), \\
598=455+143, & \text { so } \operatorname{gcd}(598,455)=\operatorname{gcd}(455,143), \\
455=3 \times 143+26 & \text { so } \operatorname{gcd}(455,143)=\operatorname{gcd}(143,26), \\
143=5 \times 26+13 . & \text { Thus } \operatorname{gcd}(143,26)=\operatorname{gcd}(26,13) .
\end{array}
$$

Finally, $\operatorname{gcd}(26,13)=13$ since $13 \mid 26$. Hence gcd $(166363,4043)=13$.
The algorithm used in the above examples can be written in general as
Theorem 2.1.16 Euclid's Algorithm. Given integers a and $b>0$, make repeated application of the Division Theorem to obtain a series of equations

$$
\begin{aligned}
a & =b q_{1}+r_{1}, & 0<r_{1}<b, \\
b & =r_{1} q_{2}+r_{2}, & 0<r_{2}<r_{1}, \\
r_{1} & =r_{2} q_{3}+r_{3}, & 0<r_{3}<r_{2}, \\
r_{2} & =r_{3} q_{4}+r_{4}, & 0<r_{4}<r_{3},
\end{aligned}
$$

Here we have a strictly decreasing sequence of non-negative integers $b>r_{1}>r_{2}>\ldots . \geq 0$. Thus one of these integers must be zero. Stop the applications of the Division Theorem when we reach the zero remainder and label this zero remainder r_{j+1}. Thus j is defined as the label of the last non-zero remainder. So the last two lines look like

$$
\begin{aligned}
r_{j-2} & =r_{j-1} q_{j}+r_{j}, \quad 0<r_{j}<r_{j-1} \\
r_{j-1} & =r_{j} q_{j+1}
\end{aligned}
$$

Then $\operatorname{gcd}(a, b)=r_{j}$, the last non-zero remainder.
Aside an algorithm is a step-by-step procedure for calculations and according to Wikipedia 'a prototypical example of an algorithm is Euclid's algorithm'. An important aspect of an algorithm is that you know it will stop. A process that could go on forever looking for something is of no practical use.

Proof p. 202 and p.206. Start by defining $r_{0}=b$.
Let $P(i)$ be the statement

$$
" \operatorname{gcd}\left(r_{i-1}, r_{i}\right)=\operatorname{gcd}(a, b) " .
$$

We will prove by induction that $P(i)$ is true for all $1 \leq i \leq j$.
Base case $i=1$. Consider

$$
\begin{aligned}
\operatorname{gcd}\left(r_{0}, r_{1}\right) & =\operatorname{gcd}\left(b, r_{1}\right) \quad \text { by definition of } r_{0}=b, \\
& =\operatorname{gcd}(a, b)
\end{aligned}
$$

by previous Theorem, using $a=b q_{1}+r_{1}$, the first line in Euclid's Algorithm. Hence $P(1)$ is true.

Inductive step Assume $P(k)$ is true for some $1 \leq k \leq j-1$, so $\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=$ $\operatorname{gcd}(a, b)$. We wish to show that $P(k+1)$ is true.

Consider

$$
\begin{aligned}
\operatorname{gcd}\left(r_{(k+1)-1}, r_{k+1}\right) & =\operatorname{gcd}\left(r_{k}, r_{k+1}\right) \\
& =\operatorname{gcd}\left(r_{k-1}, r_{k}\right)
\end{aligned}
$$

by previous Theorem, using $r_{k-1}=r_{k} q_{k+1}+r_{k+1}$, the $k+2$-th line in Euclid's Algorithm. Next use the inductive hypothesis that $P(k)$ is true, namely $\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=\operatorname{gcd}(a, b)$. Use this in the last line above to get

$$
\operatorname{gcd}\left(r_{(k+1)-1}, r_{k+1}\right)=\operatorname{gcd}(a, b),
$$

and so $P(k+1)$ is true.
Thus, by induction, $P(i)$ is true for all $1 \leq i \leq j$. End of induction
Choose $i=j$, the last line in Euclid's Algorithm, when $P(j)$ says

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{j-1}, r_{j}\right)=r_{j}
$$

since $r_{j-1}=r_{j} q_{j+1}$, i.e. $r_{j} \mid r_{j-1}$.
Theorem 2.1.17 Bezout's Lemma. Let a and $b \in \mathbb{Z}$. Then there exist $m, n \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=m a+n b .
$$

Proof p.207. But I will give here a slightly different proof.
Idea. Looking back at Euclid's Algorithm we see that a general step is of the form $r_{k-1}=r_{k} q_{k+1}+r_{k+1}$. This can be rewritten as

$$
r_{k+1}=r_{k-1}-r_{k} q_{k+1} .
$$

To use induction we need information on both r_{k-1} and r_{k} to say something about r_{k+1}. This is a form of Strong Induction, see p. 48 PJE for more details. In particular, to say something about r_{2} we need to know something of both r_{0} and r_{1}. Thus we need two base cases. End of idea.

We will look separately at the cases $a, b>0$ and then at least one of a or b non-positive.
Assume first that $a, b>0$. Let r_{i}, for $0 \leq i \leq j$, be the remainder terms occurring in Euclid's Algorithm (as before $r_{0}=b$.)

Let $P(i)$ be the proposition,

$$
" \exists m_{i}, n_{i} \in \mathbb{Z} \text { such that } r_{i}=m_{i} a+n_{i} b . "
$$

We will show by induction that $P(i)$ is true for all $0 \leq i \leq j$.

Base cases:

- When $i=0$ recall $r_{0}=b=0 \times a+1 \times b$ so choose $m_{0}=0, n_{0}=1$.
- When $i=1$ then, from the first line of Euclid's Algorithm we have,

$$
r_{1}=a-b q_{1}=1 \times a+\left(-q_{1}\right) b,
$$

so choose $m_{1}=1$ and $n_{1}=-q_{1}$.

Thus both base cases $P(0)$ and $P(1)$ are true.
Inductive Step: Assume both $P(k-1)$ and $P(k)$ are true for some $1 \leq$ $k \leq j-1$. This means $\exists m_{k-1}, n_{k-1}, m_{k}, n_{k} \in \mathbb{Z}$ for which

$$
\begin{equation*}
r_{k-1}=m_{k-1} a+n_{k-1} b \quad \text { and } \quad r_{k}=m_{k} a+n_{k} b . \tag{3}
\end{equation*}
$$

We wish to show that $P(k+1)$ is true.
From Euclid's Algorithm we have $r_{k-1}=r_{k} q_{k+1}+r_{k+1}$ which can be rewritten as

$$
r_{k+1}=r_{k-1}-r_{k} q_{k+1} .
$$

Substitute in (3) from the inductive hypothesis to get

$$
\begin{aligned}
r_{k+1} & =\left(m_{k-1} a+n_{k-1} b\right)-\left(m_{k} a+n_{k} b\right) q_{k+1} \\
& =\left(m_{k-1}-m_{k} q_{k+1}\right) a+\left(n_{k-1}-n_{k} q_{k+1}\right) b .
\end{aligned}
$$

So if we choose $m_{k+1}=m_{k-1}-m_{k} q_{k+1}$ and $n_{k}=n_{k-1}-n_{k} q_{k+1}$ we see that $P(k+1)$ is true.

Hence by induction, $P(i)$ is true for all $0 \leq i \leq j$. (End of Induction.)
Choose $i=j$, the last line in Euclid's Algorithm, when $P(j)$ says that there exists $m, n \in \mathbb{Z}$ for which

$$
m a+n b=r_{j}
$$

Yet the conclusion of Euclid's Algorithm is that $r_{j}=\operatorname{gcd}(a, b)$. Hence $m a+$ $n b=\operatorname{gcd}(a, b)$, when $a, b>0$.

The proof continues....

Assume that at least one of a or b is non-positive.

1. If $a<0$ and $b>0$ then as seen earlier

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b) .
$$

But $-a>0$ and so, by the result just proven, $\operatorname{gcd}(-a, b)=m(-a)+n b$. Thus

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=m(-a)+n b=(-m) a+n b
$$ as required.

2. If $a>0, b<0$, then there exist $m, n \in \mathbb{Z}$ with

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a,-b)=m a+n(-b)=m a+(-n) b .
$$

3. If $a<0, b<0$, then there exist $m, n \in \mathbb{Z}$ with

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(-a,-b)=m(-a)+n(-b)=(-m) a+(-n) b .
$$

4. Finally

$$
\operatorname{gcd}(a, 0)=|a|=\left\{\begin{array}{cc}
1 \times a+0 \times b & \text { if } a>0 \\
-1 \times a+0 \times b & \text { if } a<0
\end{array}\right.
$$

Similarly for $\operatorname{gcd}(0, b)$, while $\operatorname{gcd}(0,0)=0 \times 0+0 \times 0$.

Definition 2.1.18 Given integers a and b, we say that an integer c is an integral linear combination of a and b if there exist $m, n \in \mathbb{Z}$ such that $c=m a+n b$.

Question Bezout's Lemma states that for the greatest common divisor of a and b there exists $m, n \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=m a+n b$. (An existence result). How can we find m and n ?

Example 2.1.19 2.1.13 revisited Write gcd $(1561,217)$ as a linear combination of 1561 and 217.

Solution Recall

$$
\begin{aligned}
1561 & =7 \times 217+42 \\
217 & =5 \times 42+7 \\
42 & =6 \times 7,
\end{aligned}
$$

so $\operatorname{gcd}(1561,217)=7$. Working back up we see

$$
\begin{aligned}
7 & =217-5 \times 42 \\
& =217-5 \times(1561-7 \times 217) \\
& =36 \times 217-5 \times 1561
\end{aligned}
$$

Hence

$$
\operatorname{gcd}(1561,217)=36 \times 217-5 \times 1561
$$

Aside Be careful with double negatives. In this example, the final coefficient of 36 arose from $1+(-5) \times(-7)$.

Example 2.1.20 2.1.15 revisited Write gcd $(166361,4043)$ as a linear combination of 166361 and 4043.

Solution Recall

$$
\begin{aligned}
166361 & =41 \times 4043+598, \\
4043 & =6 \times 598+455, \\
598 & =1 \times 455+143, \\
455 & =3 \times 143+26, \\
143 & =5 \times 26+13, \\
26 & =2 \times 13,
\end{aligned}
$$

so $\operatorname{gcd}(166361,4043)=13$. Hence, working back up,

$$
\begin{aligned}
13 & =143-5 \times 26 \\
& =143-5 \times(455-3 \times 143)=-5 \times 455+16 \times 143 \\
& =-5 \times 455+16 \times(598-1 \times 455)=16 \times 598-21 \times 455 \\
& =16 \times 598-21 \times(4043-6 \times 598)=-21 \times 4043+142 \times 598 \\
& =-21 \times 4043+142 \times(166361-41 \times 4043) \\
& =142 \times 166361-5843 \times 4043 .
\end{aligned}
$$

Thus

$$
\operatorname{gcd}(166361,4043)=142 \times 166361-5843 \times 4043
$$

Always, always check your answers by multiplying out your final answer.
Aside In PJE, p.204, there is a discussion of a concise way of writing Euclid's Algorithm and on p. 209 of finding the corresponding linear combination.

Definition 2.1.21 Two integers a and b, not both zero, are coprime when

$$
\operatorname{gcd}(a, b)=1
$$

Example 3 Let $a=93$ and $b=56$. Then

$$
\begin{aligned}
93 & =1 \times 56+37 \\
56 & =1 \times 37+19 \\
37 & =1 \times 19+18 \\
19 & =1 \times 18+1 \\
18 & =18 \times 1+0 .
\end{aligned}
$$

Hence $\operatorname{gcd}(93,56)=1$ and thus 93 and 56 are coprime.
Theorem 2.1.22 Two integers a and b are coprime if, and only if, there exist $m, n \in \mathbb{Z}$ such that

$$
1=m a+n b .
$$

Proof (\Rightarrow) Assume a and b are coprime so $\operatorname{gcd}(a, b)=1$. But from previous result there exist $m, n \in \mathbb{Z}$ such that $m a+n b=\operatorname{gcd}(a, b)$. Combine to get required result.
(\Leftarrow) p.213, but I will give here a slightly different proof.
Assume there exist $m, n \in \mathbb{Z}$ such that $1=m a+n b$.
First, trivially 1 divides both a and b, so 1 is a common divisor of both a and b.

Secondly, let c be any common divisor of both a and b. Then $\exists s, t \in \mathbb{Z}$ such that $a=c s$ and $b=c t$. Substitute to get

$$
\begin{aligned}
1 & =m a+n b=m c s+n c t \\
& =c(m s+n t) .
\end{aligned}
$$

Here $m s+n t \in \mathbb{Z}$ and thus $c \mid 1$, which means $c=+1$ or -1 . Hence $c \leq 1$ or, in other words, 1 is greater than any common divisor.

Thus we have verified the definition that 1 is the greatest of all common divisors of a and b, i.e. $1=\operatorname{gcd}(a, b)$ as required.

Example 3 revisited Working back up the previous example we see that

$$
\begin{aligned}
1 & =19-1 \times 18 \\
& =19-1 \times(37-1 \times 19)=2 \times 19-1 \times 37 \\
& =2 \times(56-1 \times 37)-1 \times 37=2 \times 56-3 \times 37 \\
& =2 \times 56-3 \times(93-1 \times 56) .
\end{aligned}
$$

Thus

$$
1=5 \times 56+(-3) \times 93
$$

We now give a simple result that has many applications both below and in our later study of prime numbers.

Corollary 2.1.23 If a, b and c are integers with not both a and b zero, we have

1. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.
2. If $d=\operatorname{gcd}(a, b)$ then

$$
\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1
$$

Proof p. 214

