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Synchronous and asynchronous circuits

I We are concerned with the timing of digital hardware.
I An obvious way to improve efficiency and utilization of

resources is to let processes operate concurrently.
I In a synchronous circuit the input to each process is

accepted on the rising (say) edge of the clock. Thus
information is passed along at each tick of the clock.

I A more efficient use of time can occur in an asynchronous
circuit. Here the input to each process will ideally be
accepted as soon as all input signals have been received.

I Control is achieved using a multiphase clock; processes
which are not permitted to operate concurrently are
enabled at different phases of the clock.
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Example
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Generalisation

We consider timing dependency graphs with a periodic
structure.
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The algebra of timing

Imagine that a given process is waiting for inputs from two
other processes.
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The earliest time at which the input at C can be accepted is the
maximum of the times at which the two input signals arrive.
The input from A arrives at the time at which the input was
accepted at A plus the delay time from A to C.

tC = max(tA + dA, tB + dB).

Thus, as we have already seen, in order to study the dynamics
of this problem we need to consider the operations of
maximisation and addition on the real numbers.
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Tropical algebra

The tropical semiring has elements Rmax = R ∪ {−∞} and
associative, commutative binary operations ⊕ and ⊗ defined by

a⊕ b = max(a, b) and a⊗ b = a+ b,

for all a, b ∈ Rmax, where ⊗ distributes over ⊕.

The element −∞ acts as a “zero” element, whilst the element 0
acts as a multiplicative identity. Thus for all a ∈ Rmax:

a⊕−∞ = −∞⊕ a = a,

a⊗−∞ = −∞⊗ a = −∞,
0⊗ a = a⊗ 0 = a.

For all a ∈ Rmax we also have a⊕ a = a. We say that Rmax is an
idempotent semiring.
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Tropical matrix algebra and directed graphs

We define matrices over Rmax in the usual way.
The operations ⊕ and ⊗ can then be generalised as follows:

(A⊕B)i,j = Ai,j ⊕Bi,j , for all A,B ∈ Rm×n
max

(A⊗B)i,j =
l⊕

k=1

Ai,k ⊗Bk,j , for all A ∈ Rm×l
max , B ∈ Rl×n

max.

Given a finite weighted directed graph G on nodes {1, . . . , n} we
associate to it an n× n matrix A as follows:

I If there is no edge from j to i then Ai,j = −∞;
I If there is an edge from j to i labelled by w then Ai,j = w.
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Matrix of delay times

...
...

c cyclic nodes

Acyclic graph
n− c nodes

b0 b1B0

I Identify the ‘cyclic nodes’.
I The matrix of delay times is

A =
(
−∞ b1
b0 B0

)
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Dynamics

b0

B0

b1

...
...

A =
(
−∞ b1
b0 B0

)
where b0 is (n− c)× c,

B0 is (n− c)× (n− c),
b1 is c× (n− c).

I For i = 1, . . . , n let xi(k) denote the time at which process i
accepts its input for the kth time.

I To get going we need an initial condition.
Suppose we know x1(1), . . . , xn(1).

I Let A0 =
(
−∞ −∞
b0 B0

)
and A1 =

(
−∞ b1
−∞ −∞

)
.

I Then A = A0 ⊕A1 and

x(k) = (A0 ⊗ x(k))⊕ (A1 ⊗ x(k − 1)).
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The Kleene star

Given an n× n matrix of delay times A corresponding to an
acyclic graph G, the Kleene star A? is defined as

A? =
⊕
k>0

A⊗k.

I A⊗k
i,j gives the maximum delay of paths of length k in G

from j to i.
I Since the graph is acyclic, A? is given by a sum of a finite

number of terms.
I A?

i,j gives the maximum delay of paths in G from j to i.
I By substitution it is easy to check that x = A? ⊗ b is a

solution of x = (A⊗ x)⊕ b.
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Dynamics

b0

B0

b1

...
...

A =
(
−∞ b1
b0 B0

)
, A = A0 ⊕A1 where

A0 =
(
−∞ −∞
b0 B0

)
, A1 =

(
−∞ b1
−∞ −∞

)
.

I Recall that xi(k) is the time at which process i accepts its
input for the kth time.

I Initial condition: x1(1), . . . , xc(1), xc+1, . . . , xn(1).
I Then

x(k) = (A0 ⊗ x(k))⊕ (A1 ⊗ x(k − 1)).

I Thus, using the Kleene star, we find

x(k) = A?
0 ⊗A1 ⊗ x(k − 1).
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The form of our Kleene star

The dynamics of our system are governed by the system of
equations

x(k) = A?
0 ⊗A1 ⊗ x(k − 1).

Recall that the matrices A0 and A1 have a nice block matrix
form, with lots of −∞ entries. Using this nice block matrix
structure it is then easy to check that:

A?
0 =

(
id −∞

B?
0 ⊗ b0 B?

0

)
,

A?
0 ⊗A1 =

(
−∞ b1
−∞ B?

0 ⊗ b0 ⊗ b1

)
So we only need to know xc+1(k − 1), . . . , xn(k − 1).
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Eigenvalues and minimum clock period

Given an n× n matrix A we look for a λ ∈ Rmax and a
(non-trivial) vector x ∈ Rn

max such that

A⊗ x = λ⊗ x.

Theorem If GA is strongly connected then A possesses a
unique eigenvalue. Moreover, the eigenvalue is the real number
(i.e. not −∞) equal to the maximal average delay of circuits in
GA.

It can be shown that the minimum clock period is given by the
eigenvalue of B?

0 ⊗ b0 ⊗ b1, and that this coincides with the
heuristic given by the ARM designers.
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