Standard Tableaux and Klyachko's Theorem MANCHESTER Marianne Johnson 1874

Partitions, Standard Tableaux and the Major Index

• We say $\lambda = (\lambda_1, \dots, \lambda_k)$ is a partition of $n \ (\lambda \vdash n)$ if

 $\lambda_1 > \cdots > \lambda_k > 0$ and $\lambda_1 + \cdots + \lambda_k = n$

We call the λ_i the **parts** of λ . For partitions with many equal parts it is convenient to write

A Young diagram of shape $\lambda = (5, 3, 2, 1)$

 $\lambda = (\lambda_1^{n_1}, \dots, \lambda_l^{n_l}) \quad \lambda_1 > \dots > \lambda_l > 0$

to denote that there are exactly n_i parts equal to λ_i .

- The Young diagram of shape λ is a collection of nboxes arranged in left justified rows with λ_i boxes in the *i*th row.
- A **tableau** of shape λ is a filling of the Young diagram of λ with the numbers from $\{1, \ldots, k : k \leq n\}$ such

2 4 2 2 3 A tableau 3 4

Lie Representations

• Let V be a finite dimensional vector space over a field of characteristic zero and denote by T =T(V) the tensor algebra of V

$$T = \bigoplus_{n \ge 0} T_n$$
 where $T_n = V^{\otimes n}$.

• Each tensor power T_n is a semisimple module for the general linear group GL(V). Moreover, the isomorphism types of the irreducible submodules of T_n are parameterised by partitions of n with at most $\dim(V)$ parts. We have that

$$T_n = \bigoplus_{\lambda \vdash n} t_\lambda V_\lambda, \quad V_\lambda \text{ irreducible}, \quad 0 \le t_\lambda.$$

• Consider T as a Lie algebra via the multiplication $[x, y] = x \otimes y - y \otimes x$. By a theorem of Witt the Lie subalgebra L = L(V) generated by V in T is the free Lie algebra on V.

that

- entries weakly increase along rows
- entries strictly increase down columns.

We say that a tableau is **standard** if each number in $\{1, \ldots, n\}$ occurs exactly once.

- An entry *i* in a standard tableau is called a **descent** if i + 1 occurs in any row below i.
- We define the sum of all descents in a standard tableau T to be the **major index** of T, maj(T).

maj(T) = 2 + 4 + 5 + 6 + 9

= 26

Theorem [1]

Let $n \geq 3, \lambda \vdash n$.

There exists a standard tableau of shape λ with major index coprime to n if and only if $\lambda \neq (1^n), (n), (2^2)$ or (2^3) .

Proof

It is easy to prove the Theorem in one direction. Indeed, shown below are all the standard tableaux of shape $(1^n), (n), (2^2)$ or (2^3) . Clearly, none of these have major index which is coprime to n.

1	1	2		n		1	2	1	3	1	2	1	2
2	$\operatorname{maj}(T) = 0$				3	4	2	4	3	4	3	5	

where each Lie power $L_n = T_n \cap L$ is a GL(V)-submodule of T_n . • Hence, the isomorphism types of the irreducible GL(V)-submodules of L_n form a subset of those occurring in T_n .

 $L_n = \bigoplus_{\lambda \vdash n} l_\lambda V_\lambda, \quad V_\lambda \text{ irreducible}, \quad 0 \le l_\lambda \le t_\lambda.$

• It is natural to wonder when the multiplicities t_{λ} and l_{λ} are non-zero.

When are the multiplicities non-zero?

It turns out that the multiplicity $t_{\lambda} \ge 1$ for all partitions λ . That is, every irreducible GL(V) module occurs in the module decomposition of T_n . In 1949 Wever [4] gave a formula for computing the multiplicities l_{λ} which involved calculating certain character values. However, it is not immediately obvious from this formula for which λ we have $l_{\lambda} \geq 1$.

In 1974 Klyachko proved that almost all of the irreducible modules ocur in the decomposition of L_n .

Klyachko's Theorem [2]

Let $n \geq 3, \lambda \vdash n$. $l_{\lambda} \geq 1$ if and only if λ has no more than $\dim(V)$ parts and $\lambda \neq (1^n), (n), (2^2), (2^3).$

 $\operatorname{maj}(T) = 6 \quad \operatorname{maj}(T) = 10$

The proof in the opposite direction is less obvious.

Key Idea: Small descent sets

We look at standard tableaux with "small" descent sets. Let T be a standard tableau of shape $\lambda =$ $(\lambda_1, \ldots, \lambda_k) \vdash n$ and let d_T denote the number of descents in T. Then $k - 1 \leq d_T \leq n - \lambda_1$. To see this it is useful to look at the example below.

What does this have to do with standard tableaux?

In 1987 Kraśkiewicz and Weyman gave a combinatorial interpretation of the multiplicities. They proved that the multiplicity l_{λ} can be calculated by counting the number of standard tableaux with a particular major index.

Kraśkiewicz-Weyman Theorem [3]

Let $a, n \in \mathbb{N}$ be fixed coprime numbers, $\lambda \vdash n$ with at most $\dim(V)$ parts.

The multiplicity l_{λ} is equal to the number of standard tableaux of shape λ with major index congruent to a modulo n.

Theorem ⇔ Klyachko's Theorem

It has been a longstanding challenge to deduce Klyachkos Theorem directly from the Kraśkiewicz-Weyman Theorem. It is easy to see that our Theorem (left) together with the Kraśkiewicz-Weyman Theorem imply Klyachko's Theorem.

References

[1] Marianne Johnson. Standard tableaux and Klyachko's Theorem on Lie representations. Journal of Combinatorial Theory, Series A(to appear).

[2] A.A. Klyachko. Lie elements in the tensor algebra. Sibirsk Mat. Ž, 15:12961304, 1974. (Russian). English translation: Siberian J. Math. 15 (1974), 914-921.

It turns out that, if λ is a partition of $n \ge 3$ with k parts, $\lambda \ne (1^n), (n), (2^2)$ or (2^3) , then there exists a standard tableau of shape λ with at most k descents which has major index coprime to n.

[3] Witold Kraśkiewicz and Jerzy Weyman. Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr., 63:265284, 2001. (Preprint, 1987).

[4] F. Wever. Über Invarianten von Lieschen Ringen. Math. Annalen, 120:563580, 1949.

Standard Tableaux and Klyachko

Marianne Johnson