MANCHESTER 1824
 Standard Tableaux and Klyachko's Theorem Marianne Johnson

Partitions, Standard Tableaux and the Major Index

- We say $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a partition of $n(\lambda \vdash n)$ if

$$
\lambda_{1} \geq \cdots \geq \lambda_{k}>0 \quad \text { and } \quad \lambda_{1}+\cdots+\lambda_{k}=n
$$

We call the λ_{i} the parts of λ. For partitions with many equal parts it is convenient to write

$$
\lambda=\left(\lambda_{1}^{n_{1}}, \ldots, \lambda_{l}^{n_{l}}\right) \quad \lambda_{1}>\cdots>\lambda_{l}>0
$$

to denote that there are exactly n_{i} parts equal to λ_{i}.

- The Young diagram of shape λ is a collection of n boxes arranged in left justified rows with λ_{i} boxes in the i th row.
- A tableau of shape λ is a filling of the Young diagram of λ with the numbers from $\{1, \ldots, k: k \leq n\}$ such that
- entries weakly increase along rows
- entries strictly increase down columns.

We say that a tableau is standard if each number in $\{1, \ldots, n\}$ occurs exactly once

- An entry i in a standard tableau is called a descent if $i+1$ occurs in any row below i.
- We define the sum of all descents in a standard tableau T to be the major index of $T, \operatorname{maj}(T)$

$\operatorname{maj}(T)=2+4+5+6+9$ $=26$

Theorem [1]

Let $n \geq 3, \lambda \vdash n$.
There exists a standard tableau of shape λ with major index coprime to n if and only if $\lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right)$ or $\left(2^{3}\right)$.

Proof
It is easy to prove the Theorem in one direction. Indeed, shown below are all the standard tableaux of shape $\left(1^{n}\right),(n),\left(2^{2}\right)$ or $\left(2^{3}\right)$. Clearly, none of these have major index which is coprime to n.

The proof in the opposite direction is less obvious.

Key Idea: Small descent sets

We look at standard tableaux with "small" descent sets. Let T be a standard tableau of shape $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$ and let d_{T} denote the number of descents in T. Then $k-1 \leq d_{T} \leq n-\lambda_{1}$. To see this it is useful to look at the example below

1	2	3	4	5
6	7	8		
9	10			
11	$k-1$ descents			

$\mathbf{1}$	$\mathbf{5}$	$\mathbf{8}$	10	11
$\mathbf{2}$	$\mathbf{6}$	9		
$\mathbf{3}$	7			
4	$n-\lambda_{1}$ descents			

It turns out that, if λ is a partition of $n \geq 3$ with k parts, $\lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right)$ or $\left(2^{3}\right)$, then there exists a standard tableau of shape λ with at most k descents which has major index coprime to n.

Lie Representations

- Let V be a finite dimensional vector space over a field of characteristic zero and denote by $T=$ $T(V)$ the tensor algebra of V

$$
T=\bigoplus_{n \geq 0} T_{n} \quad \text { where } \quad T_{n}=V^{\otimes n}
$$

- Each tensor power T_{n} is a semisimple module for the general linear group $G L(V)$. Moreover, the isomorphism types of the irreducible submodules of T_{n} are parameterised by partitions of n with at most $\operatorname{dim}(V)$ parts. We have that

$$
T_{n}=\bigoplus_{\lambda \vdash n} t_{\lambda} V_{\lambda}, \quad V_{\lambda} \text { irreducible, } \quad 0 \leq t_{\lambda}
$$

- Consider T as a Lie algebra via the multiplication $[x, y]=x \otimes y-y \otimes x$. By a theorem of Witt the Lie subalgebra $L=L(V)$ generated by V in T is the free Lie algebra on V.

$$
L=\bigoplus_{n \geq 1} L_{n}
$$

where each Lie power $L_{n}=T_{n} \cap L$ is a $G L(V)$-submodule of T_{n}

- Hence, the isomorphism types of the irreducible $G L(V)$-submodules of L_{n} form a subset of those occurring in T_{n}.

$$
L_{n}=\bigoplus_{\lambda \vdash n} l_{\lambda} V_{\lambda}, \quad V_{\lambda} \text { irreducible, } \quad 0 \leq l_{\lambda} \leq t_{\lambda} .
$$

- It is natural to wonder when the multiplicities t_{λ} and l_{λ} are non-zero.

When are the multiplicities non-zero?

It turns out that the multiplicity $t_{\lambda} \geq 1$ for all partitions λ. That is, every irreducible $G L(V)$ module occurs in the module decomposition of T_{n}. In 1949 Wever [4] gave a formula for computing the multiplicities l_{λ} which involved calculating certain character values. However, it is not immediately obvious from this formula for which λ we have $l_{\lambda} \geq 1$.

In 1974 Klyachko proved that almost all of the irreducible modules ocur in the decomposition of L_{n}.

Klyachko's Theorem [2]

Let $n \geq 3, \lambda \vdash n$
$l_{\lambda} \geq 1$ if and only if λ has no more than $\operatorname{dim}(V)$ parts and $\lambda \neq\left(1^{n}\right),(n),\left(2^{2}\right),\left(2^{3}\right)$.

What does this have to do with standard tableaux?
In 1987 Kraśkiewicz and Weyman gave a combinatorial interpretation of the multiplicities. They proved that the multiplicity l_{λ} can be calculated by counting the number of standard tableaux with a particular major index.

Kraśkiewicz-Weyman Theorem [3]

Let $a, n \in \mathbb{N}$ be fixed coprime numbers, $\lambda \vdash n$ with at most $\operatorname{dim}(V)$ parts.
The multiplicity l_{λ} is equal to the number of standard tableaux of shape λ with major index congruent to a modulo n.

Theorem \Leftrightarrow Klyachko's Theorem

It has been a longstanding challenge to deduce Klyachkos Theorem directly from the KraśkiewiczWeyman Theorem. It is easy to see that our Theorem (left) together with the Kraśkiewicz-Weyman Theorem imply Klyachko's Theorem.

References

[1] Marianne Johnson. Standard tableaux and Klyachko's Theorem on Lie representations. Journal of Combinatorial Theory, Series A(to appear).
[2] A.A. Klyachko. Lie elements in the tensor algebra. Sibirsk Mat. Ž, 15:12961304, 1974. (Russian). English translation: Siberian J. Math. 15 (1974), 914-921.
[3] Witold Kraśkiewicz and Jerzy Weyman. Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr., 63:265284, 2001. (Preprint, 1987).
[4] F. Wever. Über Invarianten von Lieschen Ringen. Math. Annalen, 120:563580, 1949.

