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Theorem ⇔ Klyachko’s Theorem
It has been a longstanding challenge to deduce Klyachkos Theorem directly from the Kraśkiewicz-
Weyman Theorem. It is easy to see that our Theorem (left) together with the Kraśkiewicz-Weyman
Theorem imply Klyachko’s Theorem.

Kraśkiewicz-Weyman Theorem [3]
Let a, n ∈ N be fixed coprime numbers, λ ` n with at
most dim(V ) parts.

The multiplicity lλ is equal to the number of standard tableaux
of shape λ with major index congruent to a modulo n.

What does this have to do with standard tableaux?
In 1987 Kraśkiewicz and Weyman gave a combinatorial interpretation of the multiplicities. They
proved that the multiplicity lλ can be calculated by counting the number of standard tableaux with a
particular major index.

Klyachko’s Theorem [2]
Let n ≥ 3, λ ` n.
lλ ≥ 1 if and only if λ has no more than dim(V ) parts and
λ 6= (1n), (n), (22), (23).

When are the multiplicities non-zero?
It turns out that the multiplicity tλ ≥ 1 for all partitions λ. That is, every irreducible GL(V ) module
occurs in the module decomposition of Tn. In 1949 Wever [4] gave a formula for computing the
multiplicities lλ which involved calculating certain character values. However, it is not immediately
obvious from this formula for which λ we have lλ ≥ 1.

In 1974 Klyachko proved that almost all of the irreducible modules ocur in the decomposition of Ln.

Lie Representations
• Let V be a finite dimensional vector space over a field of characteristic zero and denote by T =

T (V ) the tensor algebra of V

T =
⊕
n≥0

Tn where Tn = V ⊗n.

• Each tensor power Tn is a semisimple module for the general linear group GL(V ). Moreover, the
isomorphism types of the irreducible submodules of Tn are parameterised by partitions of n with at
most dim(V ) parts. We have that

Tn =
⊕
λ`n

tλVλ, Vλ irreducible, 0 ≤ tλ.

• Consider T as a Lie algebra via the multiplication [x, y] = x⊗ y − y ⊗ x. By a theorem of Witt the
Lie subalgebra L = L(V ) generated by V in T is the free Lie algebra on V .

L =
⊕
n≥1

Ln

where each Lie power Ln = Tn ∩ L is a GL(V )-submodule of Tn.

•Hence, the isomorphism types of the irreducible GL(V )-submodules of Ln form a subset of those
occurring in Tn.

Ln =
⊕
λ`n

lλVλ, Vλ irreducible, 0 ≤ lλ ≤ tλ.

• It is natural to wonder when the multiplicities tλ and lλ are non-zero.

It turns out that, if λ is a partition of n ≥ 3 with k parts, λ 6= (1n), (n), (22) or (23), then there exists a
standard tableau of shape λ with at most k descents which has major index coprime to n.

1 5 8 10 11

2 6 9

3 7

4 n− λ1 descents

1 2 3 4 5

6 7 8

9 10

11 k − 1 descents

Key Idea: Small descent sets
We look at standard tableaux with “small” descent sets. Let T be a standard tableau of shape λ =
(λ1, . . . , λk) ` n and let dT denote the number of descents in T . Then k − 1 ≤ dT ≤ n− λ1. To see
this it is useful to look at the example below.

The proof in the opposite direction is less obvious.

1 4

2 5

3 6

maj(T ) = 12

1 3

2 5

4 6

maj(T ) = 9

1 3

2 4

5 6

maj(T ) = 8

1 2

3 5

4 6

maj(T ) = 10

1 2

3 4

5 6

maj(T ) = 6

1 3

2 4

maj(T ) = 4

1 2

3 4

maj(T ) = 2

1 2 n

maj(T ) = 0

1

2

n

maj(T ) =
n(n−1)

2

Proof
It is easy to prove the Theorem in one direction. Indeed, shown below are all the standard tableaux of
shape (1n), (n), (22) or (23). Clearly, none of these have major index which is coprime to n.

Theorem [1]
Let n ≥ 3, λ ` n.
There exists a standard tableau of shape λ with major in-
dex coprime to n if and only if λ 6= (1n), (n), (22) or (23).

maj(T ) = 2 + 4 + 5 + 6 + 9

= 26

A standard
tableau

1 2 4 8 9

3 5 11

6 10

7

A tableau

1 1 1 2 4

2 2 3

3 4

4

A Young diagram of shape
λ = (5, 3, 2, 1)

•We say λ = (λ1, . . . , λk) is a partition of n (λ ` n) if

λ1 ≥ · · · ≥ λk > 0 and λ1 + · · · + λk = n

We call the λi the parts of λ. For partitions with many
equal parts it is convenient to write

λ = (λn1
1 , . . . , λnl

l ) λ1 > · · · > λl > 0

to denote that there are exactly ni parts equal to λi.

• The Young diagram of shape λ is a collection of n
boxes arranged in left justified rows with λi boxes in
the ith row.

•A tableau of shape λ is a filling of the Young diagram
of λ with the numbers from {1, . . . , k : k ≤ n} such
that

– entries weakly increase along rows
– entries strictly increase down columns.

We say that a tableau is standard if each number in
{1, . . . , n} occurs exactly once.

•An entry i in a standard tableau is called a descent if
i + 1 occurs in any row below i.

•We define the sum of all descents in a standard tableau
T to be the major index of T , maj(T ).

Partitions, Standard Tableaux and the Major Index
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