On torsion in free central extensions of groups

Marianne Johnson

University of Manchester

BMC 2008, York

Free centre-by-metabelian groups

- Let F = F(X) be the free group on a set X.
- The quotient

is the free centre-by-metabelian group on X.

• In view of the short exact sequence

$$1 \to F''/[F'',F] \to F/[F'',F] \to F/F'' \to 1$$

this is a free central extension of the free metabelian group $F/F^{\prime\prime}$.

Free centre-by-metabelian groups

- Let F = F(X) be the free group on a set X.
- The quotient

is the free centre-by-metabelian group on X.

• In view of the short exact sequence

$$1 \to F''/[F'',F] \to F/[F'',F] \to F/F'' \to 1$$

this is a free central extension of the free metabelian group F/F''.

Free centre-by-metabelian groups

- Let F = F(X) be the free group on a set X.
- The quotient

is the free centre-by-metabelian group on X.

• In view of the short exact sequence

$$1 \rightarrow F''/[F'',F] \rightarrow F/[F'',F] \rightarrow F/F'' \rightarrow 1$$

this is a free central extension of the free metabelian group F/F''.

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group F/[F'', F] of rank n is torsion free for n = 2, 3, and for $n \ge 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

- Gupta proved her result using intricate commutator calculations.
- In 1977 Kuzmin was able to give a new proof of this result by making the following observation...

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group F/[F'',F] of rank n is torsion free for n=2,3, and for $n\geq 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

- Gupta proved her result using intricate commutator calculations.
- In 1977 Kuzmin was able to give a new proof of this result by making the following observation...

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group F/[F'',F] of rank n is torsion free for n=2,3, and for $n\geq 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

- Gupta proved her result using intricate commutator calculations.
- In 1977 Kuzmin was able to give a new proof of this result by making the following observation...

The Crucial Observation (Kuzmin, 1977)

$$t(F''/[F'',F])=H_4(F/F')\otimes \mathbb{Z}_2.$$

- $F/[F'', F] = F/[\gamma_2(F'), F]$ where $\gamma_2(F')$ is the second term of the lower central series of F'.
- Let R be any normal subgroup of F, $\gamma_c R$ an arbitrary term of the lower central series of R
- We get a free central extension $F/[\gamma_c R, F]$, of which the free centre-by-metabelian group is a special case...

The Crucial Observation (Kuzmin, 1977)

$$t(F''/[F'',F]) = H_4(F/F') \otimes \mathbb{Z}_2.$$

- $F/[F'', F] = F/[\gamma_2(F'), F]$ where $\gamma_2(F')$ is the second term of the lower central series of F'.
- Let R be any normal subgroup of F, $\gamma_c R$ an arbitrary term of the lower central series of R
- We get a free central extension $F/[\gamma_c R, F]$, of which the free centre-by-metabelian group is a special case...

The Crucial Observation (Kuzmin, 1977)

$$t(F''/[F'',F])=H_4(F/F')\otimes \mathbb{Z}_2.$$

- $F/[F'', F] = F/[\gamma_2(F'), F]$ where $\gamma_2(F')$ is the second term of the lower central series of F'.
- Let R be any normal subgroup of F, $\gamma_c R$ an arbitrary term of the lower central series of R
- We get a free central extension $F/[\gamma_c R, F]$, of which the free centre-by-metabelian group is a special case...

The Crucial Observation (Kuzmin, 1977)

$$t(F''/[F'',F])=H_4(F/F')\otimes \mathbb{Z}_2.$$

- $F/[F'', F] = F/[\gamma_2(F'), F]$ where $\gamma_2(F')$ is the second term of the lower central series of F'.
- Let R be any normal subgroup of F, $\gamma_c R$ an arbitrary term of the lower central series of R
- We get a free central extension $F/[\gamma_c R, F]$, of which the free centre-by-metabelian group is a special case...

- Let G be a group given by a free presentation G = F/R and consider the quotient $F/[\gamma_c(R), F]$, $(c \ge 2)$.
- In view of the short exact sequence

$$1 \rightarrow \gamma_c(R)/[\gamma_c(R), F] \rightarrow F/[\gamma_c(R), F] \rightarrow F/\gamma_c(R) \rightarrow 1$$

 $F/[\gamma_c(R), F]$ is a free central extension of the group $F/\gamma_c(R)$, which is in turn an extension of G = F/R with free nilpotent kernel:

$$1 \to R/\gamma_c(R) \to F/\gamma_c(R) \to F/R \to 1.$$

• While $F/\gamma_c(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_c(R)/[\gamma_c(R), F]$.

- Let G be a group given by a free presentation G = F/R and consider the quotient $F/[\gamma_c(R), F]$, $(c \ge 2)$.
- In view of the short exact sequence

$$1 \rightarrow \gamma_c(R)/[\gamma_c(R),F] \rightarrow F/[\gamma_c(R),F] \rightarrow F/\gamma_c(R) \rightarrow 1$$

 $F/[\gamma_c(R), F]$ is a free central extension of the group $F/\gamma_c(R)$, which is in turn an extension of G = F/R with free nilpotent kernel:

$$1 \to R/\gamma_c(R) \to F/\gamma_c(R) \to F/R \to 1.$$

• While $F/\gamma_c(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_c(R)/[\gamma_c(R), F]$.

- Let G be a group given by a free presentation G = F/R and consider the quotient $F/[\gamma_c(R), F]$, $(c \ge 2)$.
- In view of the short exact sequence

$$1 \rightarrow \gamma_c(R)/[\gamma_c(R),F] \rightarrow F/[\gamma_c(R),F] \rightarrow F/\gamma_c(R) \rightarrow 1$$

 $F/[\gamma_c(R), F]$ is a free central extension of the group $F/\gamma_c(R)$, which is in turn an extension of G = F/R with free nilpotent kernel:

$$1 \to R/\gamma_c(R) \to F/\gamma_c(R) \to F/R \to 1.$$

• While $F/\gamma_c(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_c(R)/[\gamma_c(R), F]$.

- Let G be a group given by a free presentation G = F/R and consider the quotient $F/[\gamma_c(R), F]$, $(c \ge 2)$.
- In view of the short exact sequence

$$1 \rightarrow \gamma_c(R)/[\gamma_c(R), F] \rightarrow F/[\gamma_c(R), F] \rightarrow F/\gamma_c(R) \rightarrow 1$$

 $F/[\gamma_c(R), F]$ is a free central extension of the group $F/\gamma_c(R)$, which is in turn an extension of G = F/R with free nilpotent kernel:

$$1 \to R/\gamma_c(R) \to F/\gamma_c(R) \to F/R \to 1.$$

• While $F/\gamma_c(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_c(R)/[\gamma_c(R), F]$.

- Let G be a group given by a free presentation G = F/R and consider the quotient $F/[\gamma_c(R), F]$, $(c \ge 2)$.
- In view of the short exact sequence

$$1 \rightarrow \gamma_c(R)/[\gamma_c(R), F] \rightarrow F/[\gamma_c(R), F] \rightarrow F/\gamma_c(R) \rightarrow 1$$

 $F/[\gamma_c(R), F]$ is a free central extension of the group $F/\gamma_c(R)$, which is in turn an extension of G = F/R with free nilpotent kernel:

$$1 \to R/\gamma_c(R) \to F/\gamma_c(R) \to F/R \to 1.$$

• While $F/\gamma_c(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_c(R)/[\gamma_c(R), F]$.

- The abelianization $R_{ab} = R/R'$ is a module for the group G = F/R (with action given by conjugation) called the **relation module**.
- For an arbitrary \mathbb{Z} -free G-module V, let L(V) denote the free Lie ring on V. This is a graded Lie ring,

$$L(V) = \bigoplus_{n \ge 1} L_n(V)$$

where $L_n(V)$ is the *n*th homogeneous component of L(V).

- The abelianization $R_{ab} = R/R'$ is a module for the group G = F/R (with action given by conjugation) called the **relation module**.
- For an arbitrary \mathbb{Z} -free G-module V, let L(V) denote the **free** Lie ring on V. This is a graded Lie ring,

$$L(V) = \bigoplus_{n \geq 1} L_n(V)$$

where $L_n(V)$ is the *n*th homogeneous component of L(V).

- There is a classical isomorphism of an *G*-modules, $\gamma_c(R)/\gamma_{c+1}(R)\cong L_c(R_{ab}),$
- Trivialising the *G*-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let G = F/R. Then there is an isomorphism

$$\gamma_c(R)/[\gamma_c(R),F]\cong L_c(R_{ab})\otimes_G \mathbb{Z}.$$

$$L_c(R_{ab}) \otimes_G \mathbb{Z}$$
.

- There is a classical isomorphism of an *G*-modules, $\gamma_c(R)/\gamma_{c+1}(R)\cong L_c(R_{ab}),$
- Trivialising the *G*-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let G = F/R. Then there is an isomorphism

$$\gamma_c(R)/[\gamma_c(R),F]\cong L_c(R_{ab})\otimes_G \mathbb{Z}.$$

$$L_c(R_{ab}) \otimes_G \mathbb{Z}$$
.

- There is a classical isomorphism of an *G*-modules, $\gamma_c(R)/\gamma_{c+1}(R) \cong L_c(R_{ab})$,
- Trivialising the *G*-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let G = F/R. Then there is an isomorphism

$$\gamma_c(R)/[\gamma_c(R),F]\cong L_c(R_{ab})\otimes_G \mathbb{Z}.$$

$$L_c(R_{ab}) \otimes_G \mathbb{Z}$$
.

- There is a classical isomorphism of an *G*-modules, $\gamma_c(R)/\gamma_{c+1}(R) \cong L_c(R_{ab})$,
- Trivialising the *G*-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let G = F/R. Then there is an isomorphism

$$\gamma_c(R)/[\gamma_c(R),F]\cong L_c(R_{ab})\otimes_G \mathbb{Z}.$$

$$L_c(R_{ab})\otimes_G \mathbb{Z}$$
.

The Exponent Theorem

Theorem (Kuzmin, 1982; Stöhr, 1987)

Let R be an arbitrary normal subgroup of F. Then the torsion subgroup $t_c = t(\gamma_c(R)/[\gamma_c(R), F])$ is of exponent dividing c if $c \ge 3$, and of exponent dividing 4 if c = 2:

$$\begin{array}{rclcrcl} c \ t_c & = & 0 & \mbox{,for} & c \geq 3, \\ \mbox{and} & 4 \ t_2 & = & 0. \end{array}$$

Exact results

Theorem (Stöhr, 1987)

Let p be a prime, and let R be a normal subgroup of F such that G = F/R has no elements of order p. Then

$$t_p\cong H_4(G,\mathbb{Z}_p).$$

Theorem (Stöhr, 1993)

If G = F/R has no elements of order 2, then

$$t_4 \cong H_6(G, \mathbb{Z}_2).$$

The Bryant-Schocker Decomposition Theorem

New results in the theory of modular Lie powers have made it possible to make further progress. Most importantly...

Theorem (Bryant and Schocker, 2006)

Let K be a field of characteristic p, G a group, V a KG-module and k a positive integer not divisible by p. Then

$$L_{p^mk}(V) \cong L_{p^m}(B_k) \oplus L_{p^{m-1}}(B_{pk}) \oplus \cdots \oplus L_1(B_{p^mk}),$$

where the modules B_{p^ik} satisfy

$$p^m B_{p^m k} \oplus p^{m-1} T_p(B_{p^{m-1} k}) \oplus \cdots \oplus T_{p^m}(B_k) \cong L_k(T_{p^m}(V)).$$

The Bryant-Schocker Decomposition Theorem

New results in the theory of modular Lie powers have made it possible to make further progress. Most importantly...

Theorem (Bryant and Schocker, 2006)

Let K be a field of characteristic p, G a group, V a KG-module and k a positive integer not divisible by p. Then

$$L_{p^mk}(V) \cong L_{p^m}(B_k) \oplus L_{p^{m-1}}(B_{pk}) \oplus \cdots \oplus L_1(B_{p^mk}),$$

where the modules B_{p^ik} satisfy

$$p^m B_{p^m k} \oplus p^{m-1} T_p(B_{p^{m-1} k}) \oplus \cdots \oplus T_{p^m}(B_k) \cong L_k(T_{p^m}(V)).$$

- Want to identify the torsion subgroup of $L_c(R_{ab}) \otimes_G \mathbb{Z}$.
- Consider the short exact sequence of *G*-modules

$$0 \longrightarrow L_c(R_{ab}) \stackrel{p}{\longrightarrow} L_c(R_{ab}) \longrightarrow L_c(R_{ab}) \otimes \mathbb{Z}_p \longrightarrow 0.$$

Part of the associated long exact homology sequence is

$$\to H_1(G, L_c(R_{ab}) \otimes \mathbb{Z}_p) \to L_c(R_{ab}) \otimes_G \mathbb{Z} \stackrel{p}{\longrightarrow} L_c(R_{ab}) \otimes_G \mathbb{Z} -$$

• So the homology group on the left is the key to the elements of order p in $L_c(R_{ab}) \otimes_G \mathbb{Z}$.

- Want to identify the torsion subgroup of $L_c(R_{ab}) \otimes_G \mathbb{Z}$.
- Consider the short exact sequence of *G*-modules

$$0 \longrightarrow L_c(R_{ab}) \stackrel{p}{\longrightarrow} L_c(R_{ab}) \longrightarrow L_c(R_{ab}) \otimes \mathbb{Z}_p \longrightarrow 0.$$

Part of the associated long exact homology sequence is

• So the homology group on the left is the key to the elements of order p in $L_c(R_{ab}) \otimes_G \mathbb{Z}$.

- Want to identify the torsion subgroup of $L_c(R_{ab}) \otimes_G \mathbb{Z}$.
- Consider the short exact sequence of *G*-modules

$$0 \longrightarrow L_c(R_{ab}) \stackrel{p}{\longrightarrow} L_c(R_{ab}) \longrightarrow L_c(R_{ab}) \otimes \mathbb{Z}_p \longrightarrow 0.$$

Part of the associated long exact homology sequence is

$$\to H_1(G, L_c(R_{ab}) \otimes \mathbb{Z}_p) \to L_c(R_{ab}) \otimes_G \mathbb{Z} \stackrel{p}{\longrightarrow} L_c(R_{ab}) \otimes_G \mathbb{Z} \to$$

• So the homology group on the left is the key to the elements of order p in $L_c(R_{ab}) \otimes_G \mathbb{Z}$.

- Want to identify the torsion subgroup of $L_c(R_{ab}) \otimes_G \mathbb{Z}$.
- Consider the short exact sequence of G-modules

$$0 \longrightarrow L_c(R_{ab}) \stackrel{p}{\longrightarrow} L_c(R_{ab}) \longrightarrow L_c(R_{ab}) \otimes \mathbb{Z}_p \longrightarrow 0.$$

Part of the associated long exact homology sequence is

$$\to H_1(G, L_c(R_{ab}) \otimes \mathbb{Z}_p) \to L_c(R_{ab}) \otimes_G \mathbb{Z} \stackrel{p}{\longrightarrow} L_c(R_{ab}) \otimes_G \mathbb{Z} \to$$

• So the homology group on the left is the key to the elements of order p in $L_c(R_{ab}) \otimes_G \mathbb{Z}$.

- Want to identify the torsion subgroup of $L_c(R_{ab}) \otimes_G \mathbb{Z}$.
- Consider the short exact sequence of *G*-modules

$$0 \longrightarrow L_c(R_{ab}) \stackrel{p}{\longrightarrow} L_c(R_{ab}) \longrightarrow L_c(R_{ab}) \otimes \mathbb{Z}_p \longrightarrow 0.$$

Part of the associated long exact homology sequence is

$$\to H_1(G, L_c(R_{ab}) \otimes \mathbb{Z}_p) \to L_c(R_{ab}) \otimes_G \mathbb{Z} \stackrel{p}{\longrightarrow} L_c(R_{ab}) \otimes_G \mathbb{Z} \to$$

• So the homology group on the left is the key to the elements of order p in $L_c(R_{ab}) \otimes_G \mathbb{Z}$.

- Let p=2, k=3, $K=\mathbb{Z}_2$, $V=R_{ab}\otimes\mathbb{Z}_2$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$L_6(R_{ab}) \cong L_2(L_3(R_{ab})) \oplus B_6^{(2)}$$

and

$$2B_6^{(2)} \oplus T_2(L_3(R_{ab})) \cong L_3(T_2(R_{ab})).$$

- Let p=2, k=3, $K=\mathbb{Z}_2$, $V=R_{ab}\otimes\mathbb{Z}_2$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$L_6(R_{ab}) \cong L_2(L_3(R_{ab})) \oplus B_6^{(2)}$$

and

$$2B_6^{(2)} \oplus T_2(L_3(R_{ab})) \cong L_3(T_2(R_{ab})).$$

- Let p=2, k=3, $K=\mathbb{Z}_2$, $V=R_{ab}\otimes\mathbb{Z}_2$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$L_6(R_{ab}) \cong L_2(L_3(R_{ab})) \oplus B_6^{(2)}$$

and

$$2B_6^{(2)} \oplus T_2(L_3(R_{ab})) \cong L_3(T_2(R_{ab})).$$

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

and hence there are no elements of order 2 in $L_6(R_{ab}) \otimes_G \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

and hence there are no elements of order 2 in $L_6(R_{ab}) \otimes_G \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

But modulo 2...

- $L_3(R_{ab})$ is a projective \mathbb{Z}_2G -module (provided that G has no elements of order 3),
- $L_2(L_3(R_{ab}))$ is also a projective \mathbb{Z}_2G -module (provided that G has no elements of order 2)
- Can show that $L_3(T_2(R_{ab}))$ has trivial homology in all dimensions ≥ 1
- ullet hence $B_6^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_2)$$

= $H_1(G, L_2(L_3(R_{ab})) \otimes \mathbb{Z}_2) \oplus H_1(G, B_6^{(2)})$
=0,

$$c = 6, p = 3$$

- Let p = 3, k = 2, $K = \mathbb{Z}_3$, $V = R_{ab} \otimes \mathbb{Z}_3$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$L_6(R_{ab}) \cong L_3(L_2(R_{ab})) \oplus B_6^{(3)}$$

$$3B_6^{(3)} \oplus T_3(L_2(R_{ab})) \cong L_2(T_3(R_{ab})).$$

By arguing similarly to the case p = 2 we obtain...

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_3)$$

= $H_1(G, L_3(L_2(R_{ab})) \otimes \mathbb{Z}_3) \oplus H_1(G, B_6^{(3)})$
=0,

$$c = 6, p = 3$$

- Let p = 3, k = 2, $K = \mathbb{Z}_3$, $V = R_{ab} \otimes \mathbb{Z}_3$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$L_6(R_{ab}) \cong L_3(L_2(R_{ab})) \oplus B_6^{(3)}$$

$$3B_6^{(3)} \oplus T_3(L_2(R_{ab})) \cong L_2(T_3(R_{ab})).$$

By arguing similarly to the case p = 2 we obtain...

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_3)$$

= $H_1(G, L_3(L_2(R_{ab})) \otimes \mathbb{Z}_3) \oplus H_1(G, B_6^{(3)})$
=0,

$$c = 6, p = 3$$

- Let p = 3, k = 2, $K = \mathbb{Z}_3$, $V = R_{ab} \otimes \mathbb{Z}_3$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$L_6(R_{ab}) \cong L_3(L_2(R_{ab})) \oplus B_6^{(3)}$$

$$3B_6^{(3)} \oplus T_3(L_2(R_{ab})) \cong L_2(T_3(R_{ab})).$$

By arguing similarly to the case p = 2 we obtain...

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_3)$$

= $H_1(G, L_3(L_2(R_{ab})) \otimes \mathbb{Z}_3) \oplus H_1(G, B_6^{(3)})$
= 0,

$$c = 6, p = 3$$

- Let p = 3, k = 2, $K = \mathbb{Z}_3$, $V = R_{ab} \otimes \mathbb{Z}_3$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$L_6(R_{ab}) \cong L_3(L_2(R_{ab})) \oplus B_6^{(3)}$$

$$3B_6^{(3)} \oplus T_3(L_2(R_{ab})) \cong L_2(T_3(R_{ab})).$$

By arguing similarly to the case p = 2 we obtain...

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_3)$$

= $H_1(G, L_3(L_2(R_{ab})) \otimes \mathbb{Z}_3) \oplus H_1(G, B_6^{(3)})$
=0.

$$c = 6, p = 3$$

- Let p = 3, k = 2, $K = \mathbb{Z}_3$, $V = R_{ab} \otimes \mathbb{Z}_3$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$L_6(R_{ab}) \cong L_3(L_2(R_{ab})) \oplus B_6^{(3)}$$

$$3B_6^{(3)} \oplus T_3(L_2(R_{ab})) \cong L_2(T_3(R_{ab})).$$

By arguing similarly to the case p = 2 we obtain...

$$H_1(G, L_6(R_{ab}) \otimes \mathbb{Z}_3)$$

= $H_1(G, L_3(L_2(R_{ab})) \otimes \mathbb{Z}_3) \oplus H_1(G, B_6^{(3)})$
=0.

Theorem (R. Stöhr and M.J.)

Theorem (R. Stöhr and M.J.)

Theorem (R. Stöhr and M.J.)

Theorem (R. Stöhr and M.J.)

Theorem (R. Stöhr and M.J.)

Exact results known to date

If G = F/R has no non-trivial elements of order dividing c then

$$t_c\cong \left\{ egin{array}{ll} H_4(G,\mathbb{Z}_p), & ext{if } c=p,\ p\ a\ prime; \ H_6(G,\mathbb{Z}_2), & ext{if } c=4; \ 0, & ext{if } c=6. \end{array}
ight.$$