On torsion in free central extensions of groups

Marianne Johnson
University of Manchester
BMC 2008, York

- Let $F=F(X)$ be the free group on a set X.
- The quotient

is the free centre-by-metabelian group on X.
- In view of the short exact sequence

this is a free central extension of the free metabelian group $F / F^{\prime \prime}$.

Free centre-by-metabelian groups

- Let $F=F(X)$ be the free group on a set X.
- The quotient

$$
F /\left[F^{\prime \prime}, F\right]
$$

is the free centre-by-metabelian group on X.

- In view of the short exact sequence

this is a free central extension of the free metabelian group $F / F^{\prime \prime}$
- Let $F=F(X)$ be the free group on a set X.
- The quotient

$$
F /\left[F^{\prime \prime}, F\right]
$$

is the free centre-by-metabelian group on X.

- In view of the short exact sequence

$$
1 \rightarrow F^{\prime \prime} /\left[F^{\prime \prime}, F\right] \rightarrow F /\left[F^{\prime \prime}, F\right] \rightarrow F / F^{\prime \prime} \rightarrow 1
$$

this is a free central extension of the free metabelian group $F / F^{\prime \prime}$.

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group $F /\left[F^{\prime \prime}, F\right]$ of rank n is torsion free for $n=2,3$, and for $n \geq 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group $F /\left[F^{\prime \prime}, F\right]$ of rank n is torsion free for $n=2,3$, and for $n \geq 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

- Gupta proved her result using intricate commutator calculations.
- In 1977 Kuzmin was able to give a new proof of this result by making the following observation.

Kanta Gupta's discovery

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group $F /\left[F^{\prime \prime}, F\right]$ of rank n is torsion free for $n=2,3$, and for $n \geq 4$ it contains an elementary abelian 2-group of rank $\binom{n}{4}$ in its centre.

- Gupta proved her result using intricate commutator calculations.
- In 1977 Kuzmin was able to give a new proof of this result by making the following observation...

The Crucial Observation (Kuzmin, 1977)

The torsion subgroup of $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is isomorphic to the integral homology group $H_{4}\left(F / F^{\prime}\right)$ reduced modulo 2,

$$
t\left(F^{\prime \prime} /\left[F^{\prime \prime}, F\right]\right)=H_{4}\left(F / F^{\prime}\right) \otimes \mathbb{Z}_{2}
$$

The Crucial Observation (Kuzmin, 1977)

The torsion subgroup of $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is isomorphic to the integral homology group $H_{4}\left(F / F^{\prime}\right)$ reduced modulo 2,

$$
t\left(F^{\prime \prime} /\left[F^{\prime \prime}, F\right]\right)=H_{4}\left(F / F^{\prime}\right) \otimes \mathbb{Z}_{2}
$$

- $F /\left[F^{\prime \prime}, F\right]=F /\left[\gamma_{2}\left(F^{\prime}\right), F\right]$ where $\gamma_{2}\left(F^{\prime}\right)$ is the second term of the lower central series of F^{\prime}.
- Let R be any normal subgroup of $F, \gamma_{c} R$ an arbitrary term of the lower central series of R
- We get a free central extension $F /\left[\gamma_{c} R, F\right]$, of which the free centre-by-metabelian group is a special case.

The Crucial Observation (Kuzmin, 1977)

The torsion subgroup of $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is isomorphic to the integral homology group $H_{4}\left(F / F^{\prime}\right)$ reduced modulo 2,

$$
t\left(F^{\prime \prime} /\left[F^{\prime \prime}, F\right]\right)=H_{4}\left(F / F^{\prime}\right) \otimes \mathbb{Z}_{2}
$$

- $F /\left[F^{\prime \prime}, F\right]=F /\left[\gamma_{2}\left(F^{\prime}\right), F\right]$ where $\gamma_{2}\left(F^{\prime}\right)$ is the second term of the lower central series of F^{\prime}.
- Let R be any normal subgroup of $F, \gamma_{c} R$ an arbitrary term of the lower central series of R
- We get a free central extension $F /\left[\gamma_{c} R, F\right]$, of which the free centre-by-metabelian group is a special case.

The Crucial Observation (Kuzmin, 1977)

The torsion subgroup of $F^{\prime \prime} /\left[F^{\prime \prime}, F\right]$ is isomorphic to the integral homology group $H_{4}\left(F / F^{\prime}\right)$ reduced modulo 2,

$$
t\left(F^{\prime \prime} /\left[F^{\prime \prime}, F\right]\right)=H_{4}\left(F / F^{\prime}\right) \otimes \mathbb{Z}_{2}
$$

- $F /\left[F^{\prime \prime}, F\right]=F /\left[\gamma_{2}\left(F^{\prime}\right), F\right]$ where $\gamma_{2}\left(F^{\prime}\right)$ is the second term of the lower central series of F^{\prime}.
- Let R be any normal subgroup of $F, \gamma_{c} R$ an arbitrary term of the lower central series of R
- We get a free central extension $F /\left[\gamma_{c} R, F\right]$, of which the free centre-by-metabelian group is a special case...

The problem

- Let G be a group given by a free presentation $G=F / R$ and consider the quotient $F /\left[\gamma_{c}(R), F\right],(c \geq 2)$.
- In view of the short exact sequence
$1 \rightarrow \gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \rightarrow F /\left[\gamma_{c}(R), F\right] \rightarrow F / \gamma_{c}(R) \rightarrow 1$
$F /\left[\gamma_{c}(R), F\right]$ is a free central extension of the groun $F / \gamma_{c}(R)$, which is in turn an extension of $G=F / R$ with free nilpotent kernel:

- While $F / \gamma_{c}(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$.

Q: What is the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$?

- Let G be a group given by a free presentation $G=F / R$ and consider the quotient $F /\left[\gamma_{c}(R), F\right],(c \geq 2)$.
- In view of the short exact sequence

$$
1 \rightarrow \gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \rightarrow F /\left[\gamma_{c}(R), F\right] \rightarrow F / \gamma_{c}(R) \rightarrow 1
$$

$F /\left[\gamma_{c}(R), F\right]$ is a free central extension of the group $F / \gamma_{c}(R)$,
kernel

- While $F / \gamma_{c}(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$

Q: What is the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$?

- Let G be a group given by a free presentation $G=F / R$ and consider the quotient $F /\left[\gamma_{c}(R), F\right],(c \geq 2)$.
- In view of the short exact sequence

$$
1 \rightarrow \gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \rightarrow F /\left[\gamma_{c}(R), F\right] \rightarrow F / \gamma_{c}(R) \rightarrow 1
$$

$F /\left[\gamma_{c}(R), F\right]$ is a free central extension of the group $F / \gamma_{c}(R)$, which is in turn an extension of $G=F / R$ with free nilpotent kernel:

$$
1 \rightarrow R / \gamma_{c}(R) \rightarrow F / \gamma_{c}(R) \rightarrow F / R \rightarrow 1
$$

- While $F / \gamma_{c}(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$

Q: What is the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$?

- Let G be a group given by a free presentation $G=F / R$ and consider the quotient $F /\left[\gamma_{c}(R), F\right]$, $(c \geq 2)$.
- In view of the short exact sequence

$$
1 \rightarrow \gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \rightarrow F /\left[\gamma_{c}(R), F\right] \rightarrow F / \gamma_{c}(R) \rightarrow 1
$$

$F /\left[\gamma_{c}(R), F\right]$ is a free central extension of the group $F / \gamma_{c}(R)$, which is in turn an extension of $G=F / R$ with free nilpotent kernel:

$$
1 \rightarrow R / \gamma_{c}(R) \rightarrow F / \gamma_{c}(R) \rightarrow F / R \rightarrow 1
$$

- While $F / \gamma_{c}(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$.

Q: What is the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$?

- Let G be a group given by a free presentation $G=F / R$ and consider the quotient $F /\left[\gamma_{c}(R), F\right]$, $(c \geq 2)$.
- In view of the short exact sequence

$$
1 \rightarrow \gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \rightarrow F /\left[\gamma_{c}(R), F\right] \rightarrow F / \gamma_{c}(R) \rightarrow 1
$$

$F /\left[\gamma_{c}(R), F\right]$ is a free central extension of the group $F / \gamma_{c}(R)$, which is in turn an extension of $G=F / R$ with free nilpotent kernel:

$$
1 \rightarrow R / \gamma_{c}(R) \rightarrow F / \gamma_{c}(R) \rightarrow F / R \rightarrow 1
$$

- While $F / \gamma_{c}(R)$ is always torsion free (Shmelkin, 1965), elements of finite order may occur in the central quotient $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$.

Q: What is the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$?

Relation modules, Lie rings and Trivialization

- The abelianization $R_{a b}=R / R^{\prime}$ is a module for the group $G=F / R$ (with action given by conjugation) called the relation module.
- For an arbitrary \mathbb{Z}-free G-module V, let $L(V)$ denote the free Lie ring on V. This is a graded Lie ring,

where $L_{n}(V)$ is the nth homogeneous component of $L(V)$.

Relation modules, Lie rings and Trivialization

- The abelianization $R_{\mathrm{ab}}=R / R^{\prime}$ is a module for the group $G=F / R$ (with action given by conjugation) called the relation module.
- For an arbitrary \mathbb{Z}-free G-module V, let $L(V)$ denote the free Lie ring on V. This is a graded Lie ring,

$$
L(V)=\bigoplus_{n \geq 1} L_{n}(V)
$$

where $L_{n}(V)$ is the nth homogeneous component of $L(V)$.

Relation modules, Lie rings and Trivialization (cont.)

- There is a classical isomorphism of an G-modules, $\gamma_{c}(R) / \gamma_{c+1}(R) \cong L_{c}\left(R_{a b}\right)$,
- Trivialising the G-action gives the following lemma:

Relation modules, Lie rings and Trivialization (cont.)

- There is a classical isomorphism of an G-modules, $\gamma_{c}(R) / \gamma_{c+1}(R) \cong L_{c}\left(R_{a b}\right)$,
- Trivialising the G-action gives the following lemma:

Relation modules, Lie rings and Trivialization (cont.)

- There is a classical isomorphism of an G-modules, $\gamma_{c}(R) / \gamma_{c+1}(R) \cong L_{c}\left(R_{a b}\right)$,
- Trivialising the G-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let $G=F / R$. Then there is an isomorphism

$$
\gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \cong L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}
$$

In order to find the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$, we can concentrate on

Relation modules, Lie rings and Trivialization (cont.)

- There is a classical isomorphism of an G-modules, $\gamma_{c}(R) / \gamma_{c+1}(R) \cong L_{c}\left(R_{a b}\right)$,
- Trivialising the G-action gives the following lemma:

Lemma (Baumslag, Strebel and Thomson, 1980)

Let $G=F / R$. Then there is an isomorphism

$$
\gamma_{c}(R) /\left[\gamma_{c}(R), F\right] \cong L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}
$$

In order to find the torsion subgroup of $\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]$, we can concentrate on

$$
L_{c}\left(R_{\mathrm{ab}}\right) \otimes_{G} \mathbb{Z}
$$

Theorem (Kuzmin, 1982; Stöhr, 1987)

Let R be an arbitrary normal subgroup of F. Then the torsion subgroup $t_{c}=t\left(\gamma_{c}(R) /\left[\gamma_{c}(R), F\right]\right)$ is of exponent dividing c if $c \geq 3$, and of exponent dividing 4 if $c=2$:

$$
\begin{aligned}
c t_{c} & =0 \quad \text {,for } \quad c \geq 3 \\
\text { and } 4 t_{2} & =0
\end{aligned}
$$

Exact results

Theorem (Stöhr, 1987)

Let p be a prime, and let R be a normal subgroup of F such that $G=F / R$ has no elements of order p. Then

$$
t_{p} \cong H_{4}\left(G, \mathbb{Z}_{p}\right)
$$

Theorem (Stöhr, 1993)

If $G=F / R$ has no elements of order 2, then

$$
t_{4} \cong H_{6}\left(G, \mathbb{Z}_{2}\right)
$$

The Bryant-Schocker Decomposition Theorem

New results in the theory of modular Lie powers have made it possible to make further progress. Most importantly...

Theorem (Bryant and Schocker, 2006)
Let K be a field of characteristic p, G a group, V a $K G$-module and k a positive integer not divisible by p. Then

where the modules $B_{p^{i} k}$ satisfy

The Bryant-Schocker Decomposition Theorem

New results in the theory of modular Lie powers have made it possible to make further progress. Most importantly...

Theorem (Bryant and Schocker, 2006)

Let K be a field of characteristic p, G a group, V a $K G$-module and k a positive integer not divisible by p. Then

$$
L_{p^{m} k}(V) \cong L_{p^{m}}\left(B_{k}\right) \oplus L_{p^{m-1}}\left(B_{p k}\right) \oplus \cdots \oplus L_{1}\left(B_{p^{m} k}\right)
$$

where the modules $B_{p^{i} k}$ satisfy

$$
p^{m} B_{p^{m} k} \oplus p^{m-1} T_{p}\left(B_{p^{m-1} k}\right) \oplus \cdots \oplus T_{p^{m}}\left(B_{k}\right) \cong L_{k}\left(T_{p^{m}}(V)\right)
$$

New Developments

- Want to identify the torsion subgroup of $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.
- Consider the short exact sequence of G-modules

- Part of the associated long exact homology sequence is

- So the homology group on the left is the key to the elements of order p in $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.

We will use the Bryant-Schocker Decompostion Theorem to calculate $H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right)$ for $c=6, p=2,3$

New Developments

- Want to identify the torsion subgroup of $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.
- Consider the short exact sequence of G-modules
$0 \longrightarrow L_{c}\left(R_{a b}\right) \xrightarrow{p} L_{c}\left(R_{a b}\right) \longrightarrow L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p} \longrightarrow 0$.
- Part of the associated long exact homology sequence is

- So the homology group on the left is the key to the elements of order p in $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.

We will use the Bryant-Schocker Decompostion Theorem to calculate $H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right)$ for $c=6, p=2,3$

New Developments

- Want to identify the torsion subgroup of $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.
- Consider the short exact sequence of G-modules

$$
0 \longrightarrow L_{c}\left(R_{a b}\right) \xrightarrow{p} L_{c}\left(R_{a b}\right) \longrightarrow L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p} \longrightarrow 0
$$

- Part of the associated long exact homology sequence is

$$
\rightarrow H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right) \rightarrow L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \xrightarrow{p} L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \rightarrow
$$

- So the homology group on the left is the key to the elements of order p in $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.

We will use the Bryant-Schocker Decompostion Theorem to calculate $H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right)$ for $c=6, p=2,3$

New Developments

- Want to identify the torsion subgroup of $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.
- Consider the short exact sequence of G-modules
$0 \longrightarrow L_{c}\left(R_{a b}\right) \xrightarrow{p} L_{c}\left(R_{a b}\right) \longrightarrow L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p} \longrightarrow 0$.
- Part of the associated long exact homology sequence is

$$
\rightarrow H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right) \rightarrow L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \xrightarrow{p} L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \rightarrow
$$

- So the homology group on the left is the key to the elements of order p in $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.

We will use the Bryant-Schocker Decompostion Theorem to calculate $H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right)$ for $c=6, p=2,3$

New Developments

- Want to identify the torsion subgroup of $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.
- Consider the short exact sequence of G-modules
$0 \longrightarrow L_{c}\left(R_{a b}\right) \xrightarrow{p} L_{c}\left(R_{a b}\right) \longrightarrow L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p} \longrightarrow 0$.
- Part of the associated long exact homology sequence is
$\rightarrow H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right) \rightarrow L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \xrightarrow{p} L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z} \rightarrow$
- So the homology group on the left is the key to the elements of order p in $L_{c}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$.

We will use the Bryant-Schocker Decompostion Theorem to calculate $H_{1}\left(G, L_{c}\left(R_{a b}\right) \otimes \mathbb{Z}_{p}\right)$ for $c=6, p=2,3$

$c=6, p=2$

- Let $p=2, k=3, K=\mathbb{Z}_{2}, V=R_{a b} \otimes \mathbb{Z}_{2}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$
\begin{gathered}
L_{6}\left(R_{a b}\right) \cong L_{2}\left(L_{3}\left(R_{a b}\right)\right) \oplus B_{6}^{(2)} \\
2 B_{6}^{(2)} \oplus T_{2}\left(L_{3}\left(R_{a b}\right)\right) \cong L_{3}\left(T_{2}\left(R_{a b}\right)\right) .
\end{gathered}
$$

$c=6, p=2$

- Let $p=2, k=3, K=\mathbb{Z}_{2}, V=R_{a b} \otimes \mathbb{Z}_{2}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$
L_{6}\left(R_{a b}\right) \cong L_{2}\left(L_{3}\left(R_{a b}\right)\right) \oplus B_{6}^{(2)}
$$

$c=6, p=2$

- Let $p=2, k=3, K=\mathbb{Z}_{2}, V=R_{a b} \otimes \mathbb{Z}_{2}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 2

$$
L_{6}\left(R_{a b}\right) \cong L_{2}\left(L_{3}\left(R_{a b}\right)\right) \oplus B_{6}^{(2)}
$$

and

$$
2 B_{6}^{(2)} \oplus T_{2}\left(L_{3}\left(R_{a b}\right)\right) \cong L_{3}\left(T_{2}\left(R_{a b}\right)\right)
$$

$c=6, p=2$

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{2}\right) \\
= & H_{1}\left(G, L_{2}\left(L_{3}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{2}\right) \oplus H_{1}\left(G, B_{6}^{(2)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2 -torsion and no 3-torsion).

$c=6, p=2$

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6, p=2$

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion)

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2 -torsion and no 3 -torsion).

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{2}\right) \\
= & H_{1}\left(G, L_{2}\left(L_{3}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{2}\right) \oplus H_{1}\left(G, B_{6}^{(2)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

But modulo 2...

- $L_{3}\left(R_{a b}\right)$ is a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 3),
- $L_{2}\left(L_{3}\left(R_{a b}\right)\right)$ is also a projective $\mathbb{Z}_{2} G$-module (provided that G has no elements of order 2)
- Can show that $L_{3}\left(T_{2}\left(R_{a b}\right)\right)$ has trivial homology in all dimensions ≥ 1
- hence $B_{6}^{(2)}$ has trivial homology in all dimensions ≥ 1

Consequently,

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{2}\right) \\
= & H_{1}\left(G, L_{2}\left(L_{3}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{2}\right) \oplus H_{1}\left(G, B_{6}^{(2)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 2 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6, p=3$

- Let $p=3, k=2, K=\mathbb{Z}_{3}, V=R_{a b} \otimes \mathbb{Z}_{3}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$
L_{6}\left(R_{a b}\right) \cong L_{3}\left(L_{2}\left(R_{a b}\right)\right) \oplus B_{6}^{(3)}
$$

and

$$
3 B_{6}^{(3)} \oplus T_{3}\left(L_{2}\left(R_{a b}\right)\right) \cong L_{2}\left(T_{3}\left(R_{a b}\right)\right)
$$

By arguing similarly to the case $p=2$ we obtain...

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{3}\right) \\
= & H_{1}\left(G, L_{3}\left(L_{2}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{3}\right) \oplus H_{1}\left(G, B_{6}^{(3)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 3 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6, p=3$

- Let $p=3, k=2, K=\mathbb{Z}_{3}, V=R_{a b} \otimes \mathbb{Z}_{3}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$
L_{6}\left(R_{a b}\right) \cong L_{3}\left(L_{2}\left(R_{a b}\right)\right) \oplus B_{6}^{(3)}
$$

and

$$
3 B_{6}^{(3)} \oplus T_{3}\left(L_{2}\left(R_{a b}\right)\right) \cong L_{2}\left(T_{3}\left(R_{a b}\right)\right)
$$

By arguing similarly to the case $p=2$ we obtain

and hence there are no elements of order 3 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2 -torsion and no 3-torsion).

$c=6, p=3$

- Let $p=3, k=2, K=\mathbb{Z}_{3}, V=R_{a b} \otimes \mathbb{Z}_{3}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$
L_{6}\left(R_{a b}\right) \cong L_{3}\left(L_{2}\left(R_{a b}\right)\right) \oplus B_{6}^{(3)}
$$

and

$$
3 B_{6}^{(3)} \oplus T_{3}\left(L_{2}\left(R_{a b}\right)\right) \cong L_{2}\left(T_{3}\left(R_{a b}\right)\right)
$$

By arguing similarly to the case $p=2$ we obtain.

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{3}\right) \\
= & H_{1}\left(G, L_{3}\left(L_{2}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{3}\right) \oplus H_{1}\left(G, B_{6}^{(3)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 3 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6, p=3$

- Let $p=3, k=2, K=\mathbb{Z}_{3}, V=R_{a b} \otimes \mathbb{Z}_{3}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$
L_{6}\left(R_{a b}\right) \cong L_{3}\left(L_{2}\left(R_{a b}\right)\right) \oplus B_{6}^{(3)}
$$

and

$$
3 B_{6}^{(3)} \oplus T_{3}\left(L_{2}\left(R_{a b}\right)\right) \cong L_{2}\left(T_{3}\left(R_{a b}\right)\right)
$$

By arguing similarly to the case $p=2$ we obtain...

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{3}\right) \\
= & H_{1}\left(G, L_{3}\left(L_{2}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{3}\right) \oplus H_{1}\left(G, B_{6}^{(3)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 3 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6, p=3$

- Let $p=3, k=2, K=\mathbb{Z}_{3}, V=R_{a b} \otimes \mathbb{Z}_{3}$.
- Then the Bryant-Schocker Decomposition Theorem gives that modulo 3

$$
L_{6}\left(R_{a b}\right) \cong L_{3}\left(L_{2}\left(R_{a b}\right)\right) \oplus B_{6}^{(3)}
$$

and

$$
3 B_{6}^{(3)} \oplus T_{3}\left(L_{2}\left(R_{a b}\right)\right) \cong L_{2}\left(T_{3}\left(R_{a b}\right)\right)
$$

By arguing similarly to the case $p=2$ we obtain...

$$
\begin{aligned}
& H_{1}\left(G, L_{6}\left(R_{a b}\right) \otimes \mathbb{Z}_{3}\right) \\
= & H_{1}\left(G, L_{3}\left(L_{2}\left(R_{a b}\right)\right) \otimes \mathbb{Z}_{3}\right) \oplus H_{1}\left(G, B_{6}^{(3)}\right) \\
= & 0
\end{aligned}
$$

and hence there are no elements of order 3 in $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ (provided G has no 2-torsion and no 3-torsion).

$c=6$

So if G has no elements of order 2 and order 3 we have shown that the abelian group $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ has no elements of order 2 and no elements of order 3. However, by the Exponent Theorem, the torsion subgroup of this abelian group is of exponent dividing 6 . Therefore it has no elements of finite order at all.

Theorem (R. Stönr and M.J.)
Let $G=F / R$ be a group without elements of order 2 and order 3, then the group $F /\left[\gamma_{6}(R), F\right]$ is torsion-free.

So if G has no elements of order 2 and order 3 we have shown that the abelian group $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ has no elements of order 2 and no elements of order 3.
torsion subgroup of this abelian group is of exponent dividing 6
Therefore it has no elements of finite order at all.
Theorem (P Stöhr-and M I -)
Let $G=F / R$ be a group without elements of order 2 and order 3, then the group $F /\left[\gamma_{6}(R), F\right]$ is torsion-free.

So if G has no elements of order 2 and order 3 we have shown that the abelian group $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ has no elements of order 2 and no elements of order 3. However, by the Exponent Theorem, the torsion subgroup of this abelian group is of exponent dividing 6 . Therefore it has no elements of finite order at all.
\square
Let $G=F / R$ be a group without elements of order 2 and order 3 . then the group $F /\left[\gamma_{6}(R), F\right]$ is torsion-free.

So if G has no elements of order 2 and order 3 we have shown that the abelian group $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ has no elements of order 2 and no elements of order 3. However, by the Exponent Theorem, the torsion subgroup of this abelian group is of exponent dividing 6 . Therefore it has no elements of finite order at all.
\square

So if G has no elements of order 2 and order 3 we have shown that the abelian group $L_{6}\left(R_{a b}\right) \otimes_{G} \mathbb{Z}$ has no elements of order 2 and no elements of order 3. However, by the Exponent Theorem, the torsion subgroup of this abelian group is of exponent dividing 6 .
Therefore it has no elements of finite order at all.
Theorem (R. Stöhr and M.J.)
Let $G=F / R$ be a group without elements of order 2 and order 3, then the group $F /\left[\gamma_{6}(R), F\right]$ is torsion-free.

Exact results known to date

If $G=F / R$ has no non-trivial elements of order dividing c then

$$
t_{c} \cong \begin{cases}H_{4}\left(G, \mathbb{Z}_{p}\right), & \text { if } c=p, p \text { a prime; } \\ H_{6}\left(G, \mathbb{Z}_{2}\right), & \text { if } c=4 ; \\ 0, & \text { if } c=6\end{cases}
$$

