Adams operations and Lie resolvents

Roger Bryant and Marianne Johnson

The Green ring

G a group, K a field. Consider finite-dimensional right $K G$-modules. Take char $K=p$ (usually prime).

The Green ring (or representation ring) $R_{K G}$ has \mathbb{Z}-basis the isomorphism classes of (f. d.) indecomposable $K G$-modules with multiplication coming from tensor product.

$$
\begin{array}{lccc}
K G \text {-modules } & U \oplus V & U \otimes_{K} V & V^{\otimes n} \\
R_{K G} & U+V & U V & V^{n}
\end{array}
$$

Example. $G=C_{p^{m}}=\langle a\rangle$. For $r=1, \ldots, p^{m}, K G(a-1)^{r}$ is a submodule of $K G$. Write $V_{r}=K G / K G(a-1)^{r}$. Then V_{r} is indecomposable of dimension $r . R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, \ldots, V_{p^{m}}\right\}$. Green (1962) showed how to multiply in $R_{K G}$.

We can extend $R_{K G}$ to $\mathbb{Q} \otimes R_{K G}$ by allowing coefficients in \mathbb{Q} rather than \mathbb{Z}.

Symmetric, exterior and Lie powers

Let V be a K-space with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free assoc. comm. K-algebra),
$\Lambda(V)=$ free assoc. K-algebra on x_{1}, \ldots, x_{r} subject to
$x_{i} \wedge x_{i}=0$ and $x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}$,
$L(V)=$ free Lie algebra over K on x_{1}, \ldots, x_{r}.
Take decompositions into homogeneous components:
$S(V)=S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots$,
$\Lambda(V)=\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$,
$L(V)=L^{1}(V) \oplus \cdots \oplus L^{n}(V) \oplus \cdots$.
These components are the 'symmetric powers', 'exterior powers' and 'Lie powers' of V. If V is a $K G$-module then $S^{n}(V), \Lambda^{n}(V)$ and $L^{n}(V)$ become $K G$-modules by linear substitutions.
$S^{0}(V) \cong \Lambda^{0}(V) \cong K$, written as 1 in $R_{K G}$.
$S^{1}(V) \cong \Lambda^{1}(V) \cong L^{1}(V) \cong V$.
General problem. Determine $S^{n}(V), \Lambda^{n}(V)$ and $L^{n}(V)$ up to isom. as sums of indecomposables, i.e. as elements of $R_{K G}$.

Adams operations

Consider the power series ring $\left(\mathbb{Q} \otimes R_{K G}\right)[[t]]$. Define $\psi_{S}^{n}(V)$ and $\psi_{\Lambda}^{n}(V)$ in $\mathbb{Q} \otimes R_{K G}$ by

$$
\begin{aligned}
& \psi_{S}^{1}(V) t+\frac{1}{2} \psi_{S}^{2}(V) t^{2}+\frac{1}{3} \psi_{S}^{3}(V) t^{3}+\cdots \\
& \quad=\log \left(1+S^{1}(V) t+S^{2}(V) t^{2}+\cdots\right) \\
& \begin{aligned}
\psi_{\Lambda}^{1}(V) t-\frac{1}{2} \psi_{\Lambda}^{2}(V) t^{2}+ & \frac{1}{3} \psi_{\Lambda}^{3}(V) t^{3}-\cdots \\
& =\log \left(1+\Lambda^{1}(V) t+\Lambda^{2}(V) t^{2}+\cdots\right)
\end{aligned}
\end{aligned}
$$

It turns out that $\psi_{S}^{n}(V), \psi_{\Lambda}^{n}(V) \in R_{K G}$ and

$$
\psi_{S}^{n}(U+V)=\psi_{S}^{n}(U)+\psi_{S}^{n}(V), \psi_{\Lambda}^{n}(U+V)=\psi_{\Lambda}^{n}(U)+\psi_{\Lambda}^{n}(V)
$$

Thus we get \mathbb{Z}-linear functions, called Adams operations,

$$
\psi_{S}^{n}, \psi_{\Lambda}^{n}: R_{K G} \rightarrow R_{K G}
$$

Properties of Adams operations

Clearly $\psi_{S}^{1}(V), \ldots, \psi_{S}^{n}(V)$ are polynomials in $S^{1}(V), \ldots, S^{n}(V)$ and vice versa. Thus knowledge of symmetric powers in $R_{K G}$ is equivalent to knowledge of the Adams operations (assuming we know how to multiply in $R_{K G}$). Similarly for exterior powers.

Problem. For given G and K determine ψ_{S}^{n} and ψ_{Λ}^{n}.
Note that ψ_{S}^{n} and ψ_{Λ}^{n} are linear, whereas S^{n} and Λ^{n} are not. Results for ψ_{S}^{n} and ψ_{Λ}^{n} are often 'simpler' than for S^{n} and Λ^{n}.

The main properties of the Adams operations on $R_{K G}$ were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

Good behaviour when n is not divisible by p : for $p \nmid n$, $\psi_{S}^{n}=\psi_{\Lambda}^{n}$, and ψ_{S}^{n} is a ring endomorphism of $R_{K G}$.
Factorisation (RMB, 2003): if $n=k p^{d}$ where $p \nmid k$ then

$$
\psi_{S}^{n}=\psi_{S}^{k} \circ \psi_{S}^{p^{d}}, \psi_{\Lambda}^{n}=\psi_{\Lambda}^{k} \circ \psi_{\Lambda}^{p^{d}} .
$$

Lie resolvents

Theorem (RMB, 2003). There are \mathbb{Z}-linear functions
$\Phi^{n}: R_{K G} \rightarrow R_{K G}$ such that

$$
L^{n}(V)=\frac{1}{n} \sum_{d \mid n} \Phi^{d}\left(V^{n / d}\right)
$$

and (by Möbius inversion)

$$
\Phi^{n}(V)=\sum_{d \mid n} \mu(n / d) d L^{d}\left(V^{n / d}\right)
$$

for all f.d. $K G$-modules V and all positive integers n.
Here μ denotes the Möbius function.
Thus knowledge of $\left\{L^{d}: d \mid n\right\}$ is equivalent to knowledge of $\left\{\Phi^{d}: d \mid n\right\}$.

Problem. For given G and K determine Φ^{n}.

Properties of Lie resolvents

Results for Φ^{n} are often simpler in form than the corresponding results for L^{n}.

Good behaviour when n is not divisible by p (RMB, 2003): for $p \nmid n$,

$$
\Phi^{n}=\mu(n) \psi_{S}^{n}=\mu(n) \psi_{\Lambda}^{n}
$$

Factorisation (RMB and M. Schocker, 2007): if $n=k p^{d}$ where $p \nmid k$ then

$$
\Phi^{n}=\Phi^{p^{d}} \circ \Phi^{k} .
$$

Periodicity of Adams operations

Theorem. Suppose that G is finite. Then ψ_{Λ}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).
There is also a corresponding result for ψ_{S}^{n}.
Theorem. Suppose that G is finite. Then ψ_{S}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.

Cyclic p-groups

From now on we shall always assume that K has prime characteristic p and $G=C_{p^{m}}$. Recall that $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, V_{2}, \ldots, V_{p^{m}}\right\}$.
What are $\psi_{S}^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$?
We start with the case where $p \nmid n$ and write $\psi^{n}=\psi_{S}^{n}=\psi_{\Lambda}^{n}$.
Theorem. Let $G=C_{p^{m}}$. Suppose that $p \nmid n$. Let $r \in\left\{1, \ldots, p^{m}\right\}$. Take i such that $p^{i}<r \leqslant p^{i+1}$ and write $r=k p^{i}+s$ where $1 \leqslant s \leqslant p^{i}$ and $1 \leqslant k \leqslant p-1$. Then there is a formula (involving only elementary arithmetic) giving $\psi^{n}\left(V_{r}\right)$ in terms of $\psi^{n}\left(V_{s}\right)$ and $\psi^{n}\left(V_{p^{i}-s}\right)$.
(Here we take $V_{0}=0$ to cover the case where $p^{i}-s=0$.) This theorem gives $\psi^{n}\left(V_{r}\right)$ recursively on r.

The proof uses and extends work of Almkvist \& Fossum, Kouwenhoven, Hughes \& Kemper, and Gow \& Laffey.

Patterns for cyclic p-groups

When we calculated ψ^{n} using Theorem 1 we noticed some interesting patterns, which we were later able to prove.

Example. Let $G=C_{25}$ where $p=5$.

$$
\begin{aligned}
\psi^{3}\left(V_{1}\right) & =V_{1} \\
\psi^{3}\left(V_{2}\right) & =V_{4}-V_{2} \\
\psi^{3}\left(V_{3}\right) & =V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{4}\right) & =V_{4} \\
\psi^{3}\left(V_{5}\right) & =V_{5} \\
\psi^{3}\left(V_{6}\right) & =V_{16}-V_{14}+V_{4} \\
\psi^{3}\left(V_{7}\right) & =V_{19}-V_{17}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{8}\right) & =V_{20}-V_{18}+V_{16}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{9}\right) & =V_{19}-V_{11}+V_{1} \\
\psi^{3}\left(V_{10}\right) & =V_{20}-V_{10} \\
\psi^{3}\left(V_{11}\right) & =V_{21}-V_{11}+V_{1} \\
\psi^{3}\left(V_{12}\right) & =V_{24}-V_{22}+V_{20}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{13}\right) & =V_{25}-V_{23}+V_{21}-V_{15}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1}
\end{aligned}
$$

An aside on cyclic 2-groups

Proposition. For $p=2$ and G a cyclic 2 -group, ψ_{S}^{n} and ψ_{Λ}^{n} are equal to the identity function for all odd n.

We also have $\Phi^{n}=\mu(n) \psi_{S}^{n}=\mu(n) \psi_{\Lambda}^{n}$ and

$$
L^{n}(V)=\frac{1}{n} \sum_{d \mid n} \Phi^{d}\left(V^{n / d}\right)
$$

Hence

$$
L^{n}(V)=\frac{1}{n} \sum_{d \mid n} \mu(d) V^{n / d}
$$

By Möbius inversion we get a curiosity:
Corollary. For char $K=2, G$ a cyclic 2-group, V a $K G$-module and n odd,

$$
V^{n}=\sum_{d \mid n} d L^{d}(V)
$$

Heller translates

As before take $G=C_{p^{m}}$.
Recall that for a $K G$-module $V, \Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \rightarrow V$ where $P(V)$ is the projective cover of V. Hence

$$
\Omega\left(V_{r}\right)=V_{p^{m}-r} \text { for } r=1, \ldots, p^{m}
$$

with the convention that $V_{0}=0$. We extend Ω to a \mathbb{Z}-linear $\operatorname{map} \Omega: R_{K G} \rightarrow R_{K G}$. Also we write Ω^{n} for the composite of Ω taken n times. It is easily seen that

$$
\Omega^{n}(V)= \begin{cases}V+a V_{p^{m}} & \text { if } n \text { is even } \\ \Omega(V)+a V_{p^{m}} & \text { if } n \text { is odd }\end{cases}
$$

where a is some integer.

Reduction of ψ_{S}^{n} to ψ_{Λ}^{n}

As before take $G=C_{p^{m}}$.
Peter Symonds (2007) gave a recursive way of finding $S^{n}\left(V_{r}\right)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem. Suppose that $p^{m-1} \leqslant r \leqslant p^{m}$. Then, for all n,

$$
\psi_{S}^{n}\left(V_{r}\right)=(-1)^{n-1} \Omega^{n}\left(\psi_{\Lambda}^{n}\left(V_{p^{m}-r}\right)\right)+\left(n, p^{m}\right) V_{p^{m} /\left(n, p^{m}\right)}+c V_{p^{m}}
$$

where the integer c may be calculated by a dimension count if $\psi_{\Lambda}^{n}\left(V_{p^{m}-r}\right)$ is known and $\left(n, p^{m}\right)$ denotes the gcd of n and p^{m}.

This is easily seen to give ψ_{S}^{n} in terms of ψ_{Λ}^{n}. (For $r<p^{m-1}$ the module V_{r} may be regarded as a module for a proper factor group of G.)

ψ_{Λ}^{n} for a cyclic 2-group

The determination of $\Lambda^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$ for a cyclic p-group is still open in general. But, as Frank Himstedt has told us, he and Peter Symonds have discovered a way of evaluating $\Lambda^{n}\left(V_{r}\right)$ in the case $p=2$. This leads to a description of ψ_{Λ}^{n} as follows.

For $G=C_{2^{m}}$ we have already seen that ψ_{Λ}^{n} is the identity map when n is odd. Also, if $n=k 2^{d}$ where k is odd then $\psi_{\Lambda}^{n}=\psi_{\Lambda}^{k} \circ \psi_{\Lambda}^{2^{d}}$. Thus it remains to describe $\psi_{\Lambda}^{2^{d}}$ for $d \geqslant 1$.
Theorem. Let $G=C_{2^{m}}$. Let $r \in\left\{1, \ldots, 2^{m}\right\}$. Take i such that $2^{i}<r \leqslant 2^{i+1}$ and write $r=2^{i}+s$ where $1 \leqslant s \leqslant 2^{i}$. Then

$$
\psi_{\Lambda}^{2^{d}}\left(V_{r}\right)=2 \psi_{\Lambda}^{2^{d-1}}\left(V_{s}\right)+\psi_{\Lambda}^{2^{d}}\left(V_{2^{i}-s}\right)
$$

for $d \geqslant 2$, while

$$
\psi_{\Lambda}^{2}\left(V_{r}\right)=2 V_{2^{i+1}}-2 V_{2^{i+1}-s}+\psi_{\Lambda}^{2}\left(V_{2^{i}-s}\right) .
$$

The result for ψ_{Λ}^{2} can be obtained from work of Gow and Laffey (2006).

A conjecture on Lie resolvents

As we have seen, if $n=k p^{d}$ where $p \nmid k$ then $\Phi^{n}=\Phi^{p^{d}} \circ \Phi^{k}$ and $\Phi^{k}=\mu(k) \psi_{S}^{k}=\mu(k) \psi_{\Lambda}^{k}$. Thus it is reasonable to focus attention on the Lie resolvents $\Phi^{p^{d}}$.

Conjecture. Let K have prime characteristic p and let G be a cyclic p-group. Then $\Phi^{p^{2}}=\Phi^{p^{3}}=\cdots=0$.

This is true for G of order p (because of work of RMB, Kovács and Stöhr) and for G of order 4. There is good computer evidence in the case of a cyclic 2 -group. Indeed, when $p=2$ the conjecture may be reformulated in terms of Lie powers: roughly speaking, it says that, for $d \geqslant 2, L^{2^{d}}\left(V_{r}\right)$ is the sum of indecomposables of the form $V_{2^{i}}$. Here is some computer evidence for L^{4}.

$L^{4}\left(V_{2}\right)$	$=$	V_{1}	+	V_{2}								
$L^{4}\left(V_{3}\right)$	$=$			V_{2}	+	$4 V_{4}$						
$L^{4}\left(V_{4}\right)$	$=$			$2 V_{2}$	+	$14 V_{4}$						
$L^{4}\left(V_{5}\right)$	=			V_{2}	+	$5 V_{4}$	+	$16 V_{8}$				
$L^{4}\left(V_{6}\right)$	$=$	V_{1}	+	V_{2}	+	$2 V_{4}$	+	$38 V_{8}$				
$L^{4}\left(V_{7}\right)$	$=$					$3 V_{4}$	+	$72 V_{8}$				
$L^{4}\left(V_{8}\right)$	$=$					$4 V_{4}$	+	$124 V_{8}$				
$L^{4}\left(V_{9}\right)$	$=$					$3 V_{4}$	+	$73 V_{8}$	+	$64 V_{16}$		
$L^{4}\left(V_{10}\right)$	$=$	V_{1}	+	V_{2}	+	$2 V_{4}$	+	$40 V_{8}$	+	$134 V_{16}$		
$L^{4}\left(V_{11}\right)$	$=$			V_{2}	+	$5 V_{4}$	+	$19 V_{8}$	+	$216 V_{16}$		
$L^{4}\left(V_{12}\right)$	$=$			$2 V_{2}$	+	$14 V_{4}$	$+$	$4 V_{8}$	+	$316 V_{16}$		
$L^{4}\left(V_{13}\right)$	$=$			V_{2}	+	$4 V_{4}$	+	$5 V_{8}$	+	$440 V_{16}$		
$L^{4}\left(V_{14}\right)$	$=$	V_{1}	+	V_{2}			+	$6 \mathrm{~V}_{8}$	+	$594 V_{16}$		
$L^{4}\left(V_{15}\right)$	$=$							$7 \mathrm{~V}_{8}$	+	$784 V_{16}$		
$L^{4}\left(V_{16}\right)$	$=$							$8 V_{8}$	+	$1016 V_{16}$		
$L^{4}\left(V_{17}\right)$	$=$							$7 \mathrm{~V}_{8}$	+	$785 \mathrm{~V}_{16}$	+	$256 V_{32}$
$L^{4}\left(V_{18}\right)$	$=$	V_{1}	+	V_{2}			+	$6 \mathrm{~V}_{8}$	+	$596 V_{16}$	+	$518 V_{32}$
$L^{4}\left(V_{19}\right)$	$=$			V_{2}	+	$4 V_{4}$	+	$5 V_{8}$	+	$443 V_{16}$	+	$792 V_{32}$
$L^{4}\left(V_{20}\right)$	$=$			$2 V_{2}$	+	$14 V_{4}$	+	$4 V_{8}$	+	$320 V_{16}$	+	$1084 V_{32}$
$L^{4}\left(V_{21}\right)$	$=$			V_{2}	+	$5 V_{4}$	+	$19 V_{8}$	+	$221 V_{16}$	$+$	$1400 V_{32}$
$L^{4}\left(V_{22}\right)$	$=$	V_{1}	+	V_{2}	$+$	$2 V_{4}$	$+$	$40 V_{8}$	+	$140 V_{16}$	$+$	$1746 V_{32}$
$L^{4}\left(V_{23}\right)$	$=$					$3 V_{4}$	+	$73 V_{8}$	+	$71 V_{16}$	$+$	$2128 V_{32}$
$L^{4}\left(V_{24}\right)$	$=$					$4 V_{4}$	+	$124 V_{8}$	+	$8 V_{16}$	+	$2552 V_{32}$
$L^{4}\left(V_{25}\right)$	$=$					$3 V_{4}$	+	$72 V_{8}$	+	$9 V_{16}$	$+$	$3024 V_{32}$

