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The Green ring

G a group, K a field. Consider finite-dimensional right
KG-modules. Take char K = p (usually prime).

The Green ring (or representation ring) Ry has Z-basis the
isomorphism classes of (f. d.) indecomposable K G-modules with
multiplication coming from tensor product.

KG-modules UV U®gV Ve
Ria U+V v {740

Example. G = Cpmn = (a). Forr=1,...,p", KG(a—1)" is a
submodule of KG. Write V, = KG/KG(a —1)". Then V, is
indecomposable of dimension . Rg¢g has Z-basis {Vi,...,Vpm}.
Green (1962) showed how to multiply in Rx¢.

We can extend Rig to Q ® Ry by allowing coefficients in QQ
rather than Z.



Symmetric, exterior and Lie powers

Let V be a K-space with basis {x1,...,z,}. Write
S(V) = K|x1,...,x,] (free assoc. comm. K-algebra),

A(V') = free assoc. K-algebra on z1,...,x, subject to
i Nxi=0and x; Nxj = —x; N\ 25,
L(V') = free Lie algebra over K on xy,..., 2.

Take decompositions into homogeneous components:
SWVy=8Myest(Vye---aS (V)& -,

AV)=AV)o A (V)e---a A" (V)D---,
LV)=L'(V)®- - ®&L"(V)®---

These components are the ‘symmetric powers’, ‘exterior powers’
and ‘Lie powers’ of V. If V is a KG-module then S™(V'), A"(V)
and L™(V') become KG-modules by linear substitutions.

SO(V) = A%(V) = K, written as 1 in Rgg.

STV)y= A (V)= LY (V)=V.

General problem. Determine S™(V'), A™(V') and L™(V') up to
isom. as sums of indecomposables, i.e. as elements of Rx¢q.
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Adams operations

Consider the power series ring (Q ® Rx¢)|[t]]. Define ¥g(V)
and ¥} (V) in Q® Rigg by

DL+ S (V)2 + L3 (V) + -
= log(1+ SY(V)t + S2(V)t2 +---),

VAV = 3R (V) + guf (V)£ — -
= log(1+ A*(V)t + A2(V)t2 +---).

It turns out that &(V), ¥} (V) € Rkg and

vs(U+V) =9g(U) +¢5(V), YRU+V) =45(U) +¢i((V).

Thus we get Z-linear functions, called Adams operations,

Ve, Y} Rkg — Rka-



Properties of Adams operations
Clearly ¥5(V),...,9%(V) are polynomials in S'(V),...,S™(V)
and vice versa. Thus knowledge of symmetric powers in Ry is
equivalent to knowledge of the Adams operations (assuming we
know how to multiply in Rg¢). Similarly for exterior powers.

Problem. For given G and K determine ¢ and }.

Note that 1% and ¥} are linear, whereas S™ and A" are not.
Results for ¢¢ and 9} are often ‘simpler’ than for S™ and A".

The main properties of the Adams operations on Ry g were
given by Benson (1984) and RMB (2003) following ideas of
Adams, Frobenius and others.

Good behaviour when n is not divisible by p: for p { n,
Pg =P}, and ¢ is a ring endomorphism of Rkq.

Factorisation (RMB, 2003): if n = kp? where p { k then
n k p? n k p?
g =1Pgothg, Yy =1yoty .



Lie resolvents

Theorem (RMB, 2003). There are Z-linear functions
®" : Rxa — Rk such that

1
" - - diyn/d
(V) == o/
dln
and (by Mdbius inversion)
o (V) = 3 u(n/d) d LAV
d|n
for all f.d. KG-modules V' and all positive integers n.

Here p denotes the Mobius function.
Thus knowledge of {L% : d | n} is equivalent to knowledge of
{®:d|n).

Problem. For given G and K determine ®".



Properties of Lie resolvents

Results for @™ are often simpler in form than the corresponding
results for L™.

Good behaviour when n is not divisible by p (RMB, 2003): for

pin,
D" = p(n)Ys = u(n)vy.

Factorisation (RMB and M. Schocker, 2007): if n = kp? where
p 1k then
" = o o DF.



Periodicity of Adams operations

Theorem. Suppose that G is finite. Then ¥} is periodic in n if
and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the
Sylow p-subgroups are cyclic then there are only finitely many
indecomposables (Higman) and the Green ring is semi-simple
(Green and O’Reilly).

There is also a corresponding result for 1g.

Theorem. Suppose that G is finite. Then 1§ is periodic in n if
and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of
Symonds (2007), based on previous work of Karagueuzian and
Symonds.
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Cyclic p-groups

From now on we shall always assume that K has prime
characteristic p and G = Cpm. Recall that Ri g has Z-basis
Vi, Vo, ..., Vpm }.

What are ¥g(V;) and ¢} (V;)?

We start with the case where p { n and write Y™ = ¢g = ¢}.

Theorem. Let G = Cpm. Suppose that p {n. Let
re{l,...,pm}. Take i such that p’ < r < p**! and write
r=kp'+s where 1 < s <p'and 1 <k < p—1. Then there is a
formula (involving only elementary arithmetic) giving "™ (V,.) in
terms of 1™ (Vy) and ¢"(Vji_s).

(Here we take Vy = 0 to cover the case where p' — s = 0.) This
theorem gives ¢"(V}.) recursively on 7.

The proof uses and extends work of Almkvist & Fossum,
Kouwenhoven, Hughes & Kemper, and Gow & Laffey.



Patterns for cyclic p-groups

When we calculated ¢™ using Theorem 1 we noticed some
interesting patterns, which we were later able to prove.

Example. Let G = Co5 where p = 5.

3 (V1)

<
w
~ N S

Vi

Via—Vs

Vs = Vs + V3
Vi

Vs
Vie—Via+ V4

Vig=Vir+Vis =V + Vs = V3 + 1

Voo —Vig+Vig — Via + Vi = Vip + Vi = V2
Vie— Vi1 + W1

Vao — Vio

Vor—=Vii+ W1

Vog = Vag +Vog = Vig +Vig = Vig+ Vi — V5

Vos = Vo + Vo1 = Vis +Vig = Vi + Vs = V3 + 1)
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An aside on cyclic 2-groups
Proposition. For p = 2 and G a cyclic 2-group, g and ¢} are
equal to the identity function for all odd n.

We also have ®" = p(n)yé = pu(n)y} and

1
V)= > el
dn
Hence

L(V) = =37 ud)vie
din

By Mobius inversion we get a curiosity:

Corollary. For char K = 2, GG a cyclic 2-group, V a
K G-module and n odd,

V=Y "dLiV).

din
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Heller translates

As before take G = Cpm.

Recall that for a KG-module V, Q(V) is defined up to
isomorphism as the kernel of any map P(V') — V where P(V)
is the projective cover of V. Hence

QV,)=Vpm_, forr=1,...,p"

with the convention that Vj = 0. We extend () to a Z-linear
map Q: Rxag — Riga. Also we write Q" for the composite of €
taken n times. It is easily seen that

n _J V+aVpm if n is even,
(V) = { QV) 4+ aVpm if nis odd,

where a is some integer.



Reduction of ¥¢ to 9}

As before take G = Cpym.

Peter Symonds (2007) gave a recursive way of finding S™(V;.) in
terms of exterior powers. His result leads to a corresponding
result for Adams operations which is somewhat easier to state.

Theorem. Suppose that p™ ! <7 < p™. Then, for all n,
P§(Ve) = (1" QR (V=) + (1, ™) Vi j(mmy + Ve

where the integer ¢ may be calculated by a dimension count if
YR (Vpm_y) is known and (n,p™) denotes the ged of n and p™.

This is easily seen to give ¥§ in terms of ¢}. (For r < p™ ! the

module V, may be regarded as a module for a proper factor
group of G.)
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4 for a cyclic 2-group

The determination of A™(V;) and ¢} (V}.) for a cyclic p-group is
still open in general. But, as Frank Himstedt has told us, he
and Peter Symonds have discovered a way of evaluating A™(V}.)
in the case p = 2. This leads to a description of ¥} as follows.

For G' = Cam we have already seen that v} is the identity map
when n is odd. Also, if n = k2¢ where k is odd then
YR =k o ¢/2\d. Thus it remains to describe 1/)/2\01 ford>1

Theorem. Let G = Com. Let r € {1,...,2™}. Take i such that
2t < r <27t and write r = 2 + s Where 1< s< 2. Then

Y3 (Vi) =208 (Va) + 93 (Vary),
for d > 2, while
YR(V2) = 2Voir1 — 2Voe_y + 3 (Var_y).

The result for 1% can be obtained from work of Gow and Laffey
(2006).



A conjecture on Lie resolvents

As we have seen, if n = kp? where p { k then ®" = " o ®F and
®F = (k) = pu(k)yk. Thus it is reasonable to focus attention
on the Lie resolvents ®P".

Conjecture. Let K have prime characteristic p and let G be a
cyclic p-group. Then PP’ =P’ = ... =,

This is true for G of order p (because of work of RMB, Kovécs
and Stohr) and for G of order 4. There is good computer
evidence in the case of a cyclic 2-group. Indeed, when p = 2 the
conjecture may be reformulated in terms of Lie powers: roughly
speaking, it says that, for d > 2, L2d(V}) is the sum of
indecomposables of the form V5:. Here is some computer
evidence for L*.
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Lz(V2) “;2 —
2 2

245\‘2; 2V + 14V, .

LE(Vs) Vo + 5Vy  + 3

4 Vo + 2Vi + 383

L4(V6) 3Va + 12V

o 4Vvy 4+ 124V

A 3Va + 73V + 64Vi6

L) Vo + 2Vy  + 40V + 134Vie

L4(V10) V2 =+ 5V4 =+ 19Vg =+ 216Vig

L4(VH) V2 + 14Vy + 4Vs  + 316Vie

L4(V12) = 4V, + 5Vg  + 440V 6

L4(V13) L s —+ 6Vs + 594Vi¢

L4(V14) = Vs + 784Vig

L4(V15) 8Vs + 1016Vig

L4(V16) Vs + 785Vie  + 256V32

Ly + 6Vs + 596Vie  + 518V32

L4(V18) 5 a4vy + 5V + 443Vie + 792V32

L) — : 4Vs  + 320Vie  + 1084V3o

1 2V + 14V, + 8

T 5V + 19V + 221Vie  + 1400V3o

L) . 2\/fl + 40V + 140Vie + 1746V3g

L4(V22) s 3\/fl + 73Vs  + 71Vie + 2128V3s

Li(VQS) 4V;L + 124Vs + 8Vie + 2552V32
24V

245\‘22; 3Va + T2k + 9Vie + 3024Vay
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