
Adams operations and Lie resolvents

Roger Bryant and Marianne Johnson

1 / 16



The Green ring

G a group, K a field. Consider finite-dimensional right
KG-modules. Take charK = p (usually prime).

The Green ring (or representation ring) RKG has Z-basis the
isomorphism classes of (f. d.) indecomposable KG-modules with
multiplication coming from tensor product.

KG-modules U ⊕ V U ⊗K V V ⊗n

RKG U + V UV V n

Example. G = Cpm = 〈a〉. For r = 1, . . . , pm, KG(a− 1)r is a
submodule of KG. Write Vr = KG/KG(a− 1)r. Then Vr is
indecomposable of dimension r. RKG has Z-basis {V1, . . . , Vpm}.
Green (1962) showed how to multiply in RKG.

We can extend RKG to Q⊗RKG by allowing coefficients in Q
rather than Z.
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Symmetric, exterior and Lie powers

Let V be a K-space with basis {x1, . . . , xr}. Write
S(V ) = K[x1, . . . , xr] (free assoc. comm. K-algebra),
Λ(V ) = free assoc. K-algebra on x1, . . . , xr subject to
xi ∧ xi = 0 and xi ∧ xj = −xj ∧ xi,
L(V ) = free Lie algebra over K on x1, . . . , xr.
Take decompositions into homogeneous components:
S(V ) = S0(V )⊕ S1(V )⊕ · · · ⊕ Sn(V )⊕ · · · ,
Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V )⊕ · · · ,
L(V ) = L1(V )⊕ · · · ⊕ Ln(V )⊕ · · · .
These components are the ‘symmetric powers’, ‘exterior powers’
and ‘Lie powers’ of V . If V is a KG-module then Sn(V ), Λn(V )
and Ln(V ) become KG-modules by linear substitutions.
S0(V ) ∼= Λ0(V ) ∼= K, written as 1 in RKG.
S1(V ) ∼= Λ1(V ) ∼= L1(V ) ∼= V .

General problem. Determine Sn(V ), Λn(V ) and Ln(V ) up to
isom. as sums of indecomposables, i.e. as elements of RKG.
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Adams operations
Consider the power series ring (Q⊗RKG)[[t]]. Define ψn

S(V )
and ψn

Λ(V ) in Q⊗RKG by

ψ1
S(V )t+ 1

2ψ
2
S(V )t2 + 1

3ψ
3
S(V )t3 + · · ·

= log(1 + S1(V )t+ S2(V )t2 + · · · ),

ψ1
Λ(V )t− 1

2ψ
2
Λ(V )t2 + 1

3ψ
3
Λ(V )t3 − · · ·

= log(1 + Λ1(V )t+ Λ2(V )t2 + · · · ).

It turns out that ψn
S(V ), ψn

Λ(V ) ∈ RKG and

ψn
S(U + V ) = ψn

S(U) + ψn
S(V ), ψn

Λ(U + V ) = ψn
Λ(U) + ψn

Λ(V ).

Thus we get Z-linear functions, called Adams operations,

ψn
S , ψ

n
Λ : RKG → RKG.
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Properties of Adams operations
Clearly ψ1

S(V ), . . . , ψn
S(V ) are polynomials in S1(V ), . . . , Sn(V )

and vice versa. Thus knowledge of symmetric powers in RKG is
equivalent to knowledge of the Adams operations (assuming we
know how to multiply in RKG). Similarly for exterior powers.

Problem. For given G and K determine ψn
S and ψn

Λ.

Note that ψn
S and ψn

Λ are linear, whereas Sn and Λn are not.
Results for ψn

S and ψn
Λ are often ‘simpler’ than for Sn and Λn.

The main properties of the Adams operations on RKG were
given by Benson (1984) and RMB (2003) following ideas of
Adams, Frobenius and others.

Good behaviour when n is not divisible by p: for p - n,
ψn

S = ψn
Λ, and ψn

S is a ring endomorphism of RKG.

Factorisation (RMB, 2003): if n = kpd where p - k then

ψn
S = ψk

S ◦ ψ
pd

S , ψn
Λ = ψk

Λ ◦ ψ
pd

Λ .
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Lie resolvents
Theorem (RMB, 2003). There are Z-linear functions
Φn : RKG → RKG such that

Ln(V ) =
1
n

∑
d|n

Φd(V n/d)

and (by Möbius inversion)

Φn(V ) =
∑
d|n

µ(n/d) dLd(V n/d)

for all f.d. KG-modules V and all positive integers n.

Here µ denotes the Möbius function.
Thus knowledge of {Ld : d | n} is equivalent to knowledge of
{Φd : d | n}.

Problem. For given G and K determine Φn.
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Properties of Lie resolvents

Results for Φn are often simpler in form than the corresponding
results for Ln.

Good behaviour when n is not divisible by p (RMB, 2003): for
p - n,

Φn = µ(n)ψn
S = µ(n)ψn

Λ.

Factorisation (RMB and M. Schocker, 2007): if n = kpd where
p - k then

Φn = Φpd ◦ Φk.
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Periodicity of Adams operations

Theorem. Suppose that G is finite. Then ψn
Λ is periodic in n if

and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the
Sylow p-subgroups are cyclic then there are only finitely many
indecomposables (Higman) and the Green ring is semi-simple
(Green and O’Reilly).
There is also a corresponding result for ψn

S .

Theorem. Suppose that G is finite. Then ψn
S is periodic in n if

and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of
Symonds (2007), based on previous work of Karagueuzian and
Symonds.
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Cyclic p-groups

From now on we shall always assume that K has prime
characteristic p and G = Cpm . Recall that RKG has Z-basis
{V1, V2, . . . , Vpm}.
What are ψn

S(Vr) and ψn
Λ(Vr)?

We start with the case where p - n and write ψn = ψn
S = ψn

Λ.

Theorem. Let G = Cpm . Suppose that p - n. Let
r ∈ {1, . . . , pm}. Take i such that pi < r 6 pi+1 and write
r = kpi + s where 1 6 s 6 pi and 1 6 k 6 p− 1. Then there is a
formula (involving only elementary arithmetic) giving ψn(Vr) in
terms of ψn(Vs) and ψn(Vpi−s).

(Here we take V0 = 0 to cover the case where pi − s = 0.) This
theorem gives ψn(Vr) recursively on r.

The proof uses and extends work of Almkvist & Fossum,
Kouwenhoven, Hughes & Kemper, and Gow & Laffey.
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Patterns for cyclic p-groups
When we calculated ψn using Theorem 1 we noticed some
interesting patterns, which we were later able to prove.

Example. Let G = C25 where p = 5.
ψ3(V1) = V1

ψ3(V2) = V4 − V2

ψ3(V3) = V5 − V3 + V1

ψ3(V4) = V4

ψ3(V5) = V5

ψ3(V6) = V16 − V14 + V4

ψ3(V7) = V19 − V17 + V13 − V11 + V5 − V3 + V1

ψ3(V8) = V20 − V18 + V16 − V14 + V12 − V10 + V4 − V2

ψ3(V9) = V19 − V11 + V1

ψ3(V10) = V20 − V10

ψ3(V11) = V21 − V11 + V1

ψ3(V12) = V24 − V22 + V20 − V14 + V12 − V10 + V4 − V2

ψ3(V13) = V25 − V23 + V21 − V15 + V13 − V11 + V5 − V3 + V1
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An aside on cyclic 2-groups
Proposition. For p = 2 and G a cyclic 2-group, ψn

S and ψn
Λ are

equal to the identity function for all odd n.

We also have Φn = µ(n)ψn
S = µ(n)ψn

Λ and

Ln(V ) =
1
n

∑
d|n

Φd(V n/d).

Hence
Ln(V ) =

1
n

∑
d|n

µ(d)V n/d.

By Möbius inversion we get a curiosity:

Corollary. For charK = 2, G a cyclic 2-group, V a
KG-module and n odd,

V n =
∑
d|n

dLd(V ).
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Heller translates

As before take G = Cpm .
Recall that for a KG-module V , Ω(V ) is defined up to
isomorphism as the kernel of any map P (V )� V where P (V )
is the projective cover of V . Hence

Ω(Vr) = Vpm−r for r = 1, . . . , pm

with the convention that V0 = 0. We extend Ω to a Z-linear
map Ω : RKG → RKG. Also we write Ωn for the composite of Ω
taken n times. It is easily seen that

Ωn(V ) =
{
V + aVpm if n is even,
Ω(V ) + aVpm if n is odd,

where a is some integer.
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Reduction of ψnS to ψnΛ

As before take G = Cpm .
Peter Symonds (2007) gave a recursive way of finding Sn(Vr) in
terms of exterior powers. His result leads to a corresponding
result for Adams operations which is somewhat easier to state.

Theorem. Suppose that pm−1 6 r 6 pm. Then, for all n,

ψn
S(Vr) = (−1)n−1Ωn(ψn

Λ(Vpm−r)) + (n, pm)Vpm/(n,pm) + cVpm

where the integer c may be calculated by a dimension count if
ψn

Λ(Vpm−r) is known and (n, pm) denotes the gcd of n and pm.

This is easily seen to give ψn
S in terms of ψn

Λ. (For r < pm−1 the
module Vr may be regarded as a module for a proper factor
group of G.)
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ψnΛ for a cyclic 2-group
The determination of Λn(Vr) and ψn

Λ(Vr) for a cyclic p-group is
still open in general. But, as Frank Himstedt has told us, he
and Peter Symonds have discovered a way of evaluating Λn(Vr)
in the case p = 2. This leads to a description of ψn

Λ as follows.

For G = C2m we have already seen that ψn
Λ is the identity map

when n is odd. Also, if n = k2d where k is odd then
ψn

Λ = ψk
Λ ◦ ψ2d

Λ . Thus it remains to describe ψ2d

Λ for d > 1.

Theorem. Let G = C2m . Let r ∈ {1, . . . , 2m}. Take i such that
2i < r 6 2i+1 and write r = 2i + s where 1 6 s 6 2i. Then

ψ2d

Λ (Vr) = 2ψ2d−1

Λ (Vs) + ψ2d

Λ (V2i−s),

for d > 2, while

ψ2
Λ(Vr) = 2V2i+1 − 2V2i+1−s + ψ2

Λ(V2i−s).

The result for ψ2
Λ can be obtained from work of Gow and Laffey

(2006).
14 / 16



A conjecture on Lie resolvents

As we have seen, if n = kpd where p - k then Φn = Φpd ◦ Φk and
Φk = µ(k)ψk

S = µ(k)ψk
Λ. Thus it is reasonable to focus attention

on the Lie resolvents Φpd
.

Conjecture. Let K have prime characteristic p and let G be a
cyclic p-group. Then Φp2

= Φp3
= · · · = 0.

This is true for G of order p (because of work of RMB, Kovács
and Stöhr) and for G of order 4. There is good computer
evidence in the case of a cyclic 2-group. Indeed, when p = 2 the
conjecture may be reformulated in terms of Lie powers: roughly
speaking, it says that, for d > 2, L2d

(Vr) is the sum of
indecomposables of the form V2i . Here is some computer
evidence for L4.
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L4(V2) = V1 + V2

L4(V3) = V2 + 4V4

L4(V4) = 2V2 + 14V4

L4(V5) = V2 + 5V4 + 16V8

L4(V6) = V1 + V2 + 2V4 + 38V8

L4(V7) = 3V4 + 72V8

L4(V8) = 4V4 + 124V8

L4(V9) = 3V4 + 73V8 + 64V16

L4(V10) = V1 + V2 + 2V4 + 40V8 + 134V16

L4(V11) = V2 + 5V4 + 19V8 + 216V16

L4(V12) = 2V2 + 14V4 + 4V8 + 316V16

L4(V13) = V2 + 4V4 + 5V8 + 440V16

L4(V14) = V1 + V2 + 6V8 + 594V16

L4(V15) = 7V8 + 784V16

L4(V16) = 8V8 + 1016V16

L4(V17) = 7V8 + 785V16 + 256V32

L4(V18) = V1 + V2 + 6V8 + 596V16 + 518V32

L4(V19) = V2 + 4V4 + 5V8 + 443V16 + 792V32

L4(V20) = 2V2 + 14V4 + 4V8 + 320V16 + 1084V32

L4(V21) = V2 + 5V4 + 19V8 + 221V16 + 1400V32

L4(V22) = V1 + V2 + 2V4 + 40V8 + 140V16 + 1746V32

L4(V23) = 3V4 + 73V8 + 71V16 + 2128V32

L4(V24) = 4V4 + 124V8 + 8V16 + 2552V32

L4(V25) = 3V4 + 72V8 + 9V16 + 3024V32
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