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The Green ring

Let K be a field of prime characteristic p and let G be a finite
group. We consider finite-dimensional right KG-modules.

The Green ring (or representation ring) RKG has Z-basis
consisting of the isomorphism classes of (f. d.) indecomposable
KG-modules with multiplication coming from tensor product.

KG-modules: U ⊕ V U ⊗K V V ⊗n

Elements of RKG : U + V UV V n

Example. Let G = 〈g〉 be a cyclic p-group of order q.
There are q indecomposable KG-modules up to isomorphism.

For r = 1, . . . , q write Vr = KG/KG(g − 1)r.
Then Vr is indecomposable of dimension r and hence RKG has
Z-basis {V1, . . . , Vq}.
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Symmetric and exterior powers

Let V be a vector space over K with basis {x1, . . . , xr}. Write

S(V ) = K[x1, . . . , xr] (free associative commutative K-algebra),
Λ(V ) = free associative K-algebra on x1, . . . , xr subject to
Λ(V ) = xi ∧ xi = 0 and xi ∧ xj = −xj ∧ xi.

Take decompositions into homogeneous components:
S(V ) = S0(V )⊕ S1(V )⊕ · · · ⊕ Sn(V )⊕ · · · ,
Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V )⊕ · · ·

These components are the symmetric powers and exterior
powers of V .

If V is a KG-module then Sn(V ), and Λn(V ) become
KG-modules by linear substitutions.

S0(V ) ∼= Λ0(V ) ∼= K, written as 1 in RKG.
S1(V ) ∼= Λ1(V ) ∼= V .
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Adams operations

Consider the power series ring (Q⊗RKG)[[t]]. Define ψn
S(V )

and ψn
Λ(V ) in Q⊗RKG by

ψ1
S(V )t+ 1

2ψ
2
S(V )t2 + 1

3ψ
3
S(V )t3 + · · ·

= log(1 + S1(V )t+ S2(V )t2 + · · · ),

ψ1
Λ(V )t− 1

2ψ
2
Λ(V )t2 + 1

3ψ
3
Λ(V )t3 − · · ·

= log(1 + Λ1(V )t+ Λ2(V )t2 + · · · ).

It turns out that ψn
S(V ), ψn

Λ(V ) ∈ RKG and

ψn
S(U + V ) = ψn

S(U) + ψn
S(V ), ψn

Λ(U + V ) = ψn
Λ(U) + ψn

Λ(V ).

Thus we get Z-linear functions called the Adams operations:

ψn
S , ψ

n
Λ : RKG → RKG.
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Properties of Adams operations

The main properties of the Adams operations on RKG were
given by Benson (1984) and RMB (2003) following ideas of
Adams, Frobenius and others.

Linearity.
As we have seen, ψn

S and ψn
Λ are Z-linear maps.

‘Nice’ behaviour when n is not divisible by p.
For p - n, ψn

S = ψn
Λ, and ψn

S is a ring endomorphism of RKG.

Factorisation property.
If n = kpd where p - k then

ψn
S = ψk

S ◦ ψ
pd

S , ψn
Λ = ψk

Λ ◦ ψ
pd

Λ .
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Periodicity of Adams operations

Theorem 1. ψn
Λ is periodic in n if and only if the Sylow

p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the
Sylow p-subgroups are cyclic then there are only finitely many
indecomposables (Higman) and the Green ring is semi-simple
(Green and O’Reilly).

There is also a corresponding result for ψn
S .

Theorem 2. ψn
S is periodic in n if and only if the Sylow

p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of
Symonds (2007), based on previous work of Karagueuzian and
Symonds.
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Finally...

(Thank you for your attention.)



Example: Cyclic p-groups

Theorem 3. Let G be a cyclic p-group of order q > 1. Then
(i) ψn

Λ = ψn+2q
Λ for all n > 0.

(ii) ψn
S = ψn+2q

S for all n > 0.

Note: If ψn
Λ = ψn+m

Λ for all n > 0 then 2q | m, i.e. this is the
minimum period for ψn

Λ.
The minimum period for ψn

S is 2q if p is odd and q if p is even.
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