Periodicity of Adams operations on the Green ring of a finite group

Marianne Johnson and Roger Bryant

ICRA XIV, Tokyo, August 11th-15th 2010

Shameless self-promotion

Joint work with Professor Roger Bryant.

Shameless self-promotion

Joint work with Professor Roger Bryant.

Shameless self-promotion

Joint work with Professor Roger Bryant.
'Periodicity of Adams operations on the Green ring of a finite group', Journal of Pure and Applied Algebra, (to appear).

Preprint available at arXiv:0912.2933v1 [math.RT]

Shameless self-promotion

Joint work with Professor Roger Bryant.
'Periodicity of Adams operations on the Green ring of a finite group', Journal of Pure and Applied Algebra, (to appear).

Preprint available at arXiv:0912.2933v1 [math.RT]

Shameless self-promotion

Joint work with Professor Roger Bryant.
'Periodicity of Adams operations on the Green ring of a finite group', Journal of Pure and Applied Algebra, (to appear).

Preprint available at arXiv:0912.2933v1 [math.RT]
(You might also like to try:
'Adams operations on the Green ring of a cyclic group of prime-power order' in Journal of Algebra, 323 (2010).)

The Green ring

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right $K G$-modules.

The Green ring (or representation ring) $R_{K G}$ has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable $K G$-modules with multiplication coming from tensor product.

$$
\begin{array}{rccc}
K G \text {-modules: } & U \oplus V & U \otimes_{K} V & V^{\otimes n} \\
\text { Elements of } R_{K G}: & U+V & U V & V^{n}
\end{array}
$$

The Green ring

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right $K G$-modules.

The Green ring (or representation ring) $R_{K G}$ has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable $K G$-modules with multiplication coming from tensor product.

$$
\begin{array}{rccc}
K G \text {-modules: } & U \oplus V & U \otimes_{K} V & V^{\otimes n} \\
\text { Elements of } R_{K G}: & U+V & U V & V^{n}
\end{array}
$$

Example. Let $G=\langle g\rangle$ be a cyclic p-group of order q. There are q indecomposable $K G$-modules up to isomorphism.

For $r=1, \ldots, q$ write $V_{r}=K G / K G(g-1)^{r}$.
Then V_{r} is indecomposable of dimension r and hence $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, \ldots, V_{q}\right\}$.

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra), $\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra), $\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Take decompositions into homogeneous components:

$$
\begin{aligned}
& S(V)=S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots, \\
& \Lambda(V)=\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots
\end{aligned}
$$

These components are the symmetric powers and exterior powers of V.

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write
$S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra),
$\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Take decompositions into homogeneous components:
$S(V)=S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots$,
$\Lambda(V)=\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$
These components are the symmetric powers and exterior powers of V.

If V is a $K G$-module then $S^{n}(V)$, and $\Lambda^{n}(V)$ become $K G$-modules by linear substitutions.
$S^{0}(V) \cong \Lambda^{0}(V) \cong K$, written as 1 in $R_{K G}$.
$S^{1}(V) \cong \Lambda^{1}(V) \cong V$.

Adams operations

Consider the power series ring $\left(\mathbb{Q} \otimes R_{K G}\right)[[t]]$. Define $\psi_{S}^{n}(V)$ and $\psi_{\Lambda}^{n}(V)$ in $\mathbb{Q} \otimes R_{K G}$ by

$$
\begin{aligned}
& \psi_{S}^{1}(V) t+\frac{1}{2} \psi_{S}^{2}(V) t^{2}+\frac{1}{3} \psi_{S}^{3}(V) t^{3}+\cdots \\
& \quad=\log \left(1+S^{1}(V) t+S^{2}(V) t^{2}+\cdots\right) \\
& \begin{aligned}
& \psi_{\Lambda}^{1}(V) t-\frac{1}{2} \psi_{\Lambda}^{2}(V) t^{2}+\frac{1}{3} \psi_{\Lambda}^{3}(V) t^{3}-\cdots \\
&=\log \left(1+\Lambda^{1}(V) t+\Lambda^{2}(V) t^{2}+\cdots\right)
\end{aligned}
\end{aligned}
$$

Adams operations

Consider the power series ring $\left(\mathbb{Q} \otimes R_{K G}\right)[[t]]$. Define $\psi_{S}^{n}(V)$ and $\psi_{\Lambda}^{n}(V)$ in $\mathbb{Q} \otimes R_{K G}$ by

$$
\begin{aligned}
& \psi_{S}^{1}(V) t+\frac{1}{2} \psi_{S}^{2}(V) t^{2}+\frac{1}{3} \psi_{S}^{3}(V) t^{3}+\cdots \\
& \quad=\log \left(1+S^{1}(V) t+S^{2}(V) t^{2}+\cdots\right) \\
& \begin{aligned}
& \psi_{\Lambda}^{1}(V) t-\frac{1}{2} \psi_{\Lambda}^{2}(V) t^{2}+\frac{1}{3} \psi_{\Lambda}^{3}(V) t^{3}-\cdots \\
&=\log \left(1+\Lambda^{1}(V) t+\Lambda^{2}(V) t^{2}+\cdots\right)
\end{aligned}
\end{aligned}
$$

It turns out that $\psi_{S}^{n}(V), \psi_{\Lambda}^{n}(V) \in R_{K G}$ and

$$
\psi_{S}^{n}(U+V)=\psi_{S}^{n}(U)+\psi_{S}^{n}(V), \quad \psi_{\Lambda}^{n}(U+V)=\psi_{\Lambda}^{n}(U)+\psi_{\Lambda}^{n}(V)
$$

Thus we get \mathbb{Z}-linear functions called the Adams operations:

$$
\psi_{S}^{n}, \psi_{\Lambda}^{n}: R_{K G} \rightarrow R_{K G}
$$

Properties of Adams operations

The main properties of the Adams operations on $R_{K G}$ were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

Linearity.
As we have seen, ψ_{S}^{n} and ψ_{Λ}^{n} are \mathbb{Z}-linear maps.
'Nice' behaviour when n is not divisible by p.
For $p \nmid n, \psi_{S}^{n}=\psi_{\Lambda}^{n}$, and ψ_{S}^{n} is a ring endomorphism of $R_{K G}$.
Factorisation property.
If $n=k p^{d}$ where $p \nmid k$ then

$$
\psi_{S}^{n}=\psi_{S}^{k} \circ \psi_{S}^{p^{d}}, \quad \psi_{\Lambda}^{n}=\psi_{\Lambda}^{k} \circ \psi_{\Lambda}^{p^{d}}
$$

Periodicity of Adams operations

Theorem 1. ψ_{Λ}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

Periodicity of Adams operations

Theorem 1. ψ_{Λ}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

There is also a corresponding result for ψ_{S}^{n}.
Theorem 2. ψ_{S}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.

Finally．．．

ごせいちょう ありがとう ございました

（Thank you for your attention．）

Example: Cyclic p-groups

Theorem 3. Let G be a cyclic p-group of order $q>1$. Then
(i) $\psi_{\Lambda}^{n}=\psi_{\Lambda}^{n+2 q}$ for all $n>0$.
(ii) $\psi_{S}^{n}=\psi_{S}^{n+2 q}$ for all $n>0$.

Note: If $\psi_{\Lambda}^{n}=\psi_{\Lambda}^{n+m}$ for all $n>0$ then $2 q \mid m$, i.e. this is the minimum period for ψ_{Λ}^{n}.
The minimum period for ψ_{S}^{n} is $2 q$ if p is odd and q if p is even.

