# Periodicity of Adams operations on the Green ring of a finite group

Marianne Johnson and Roger Bryant

ICRA XIV, Tokyo, August 11th-15th 2010

Joint work with Professor Roger Bryant.

Joint work with Professor Roger Bryant.



Joint work with Professor Roger Bryant.

'Periodicity of Adams operations on the Green ring of a finite group', \_\_\_\_\_\_ Journal of Pure and Applied Algebra, (to appear).

> Preprint available at arXiv:0912.2933v1 [math.RT]



Joint work with Professor Roger Bryant.

'Periodicity of Adams operations on the Green ring of a finite group', \_\_\_\_\_\_ Journal of Pure and Applied Algebra, (to appear).

> Preprint available at arXiv:0912.2933v1 [math.RT]



Joint work with Professor Roger Bryant.

'Periodicity of Adams operations on the Green ring of a finite group', \_\_\_\_\_\_ Journal of Pure and Applied Algebra, (to appear).

> Preprint available at arXiv:0912.2933v1 [math.RT] (You might also like to try:

'Adams operations on the Green ring of a cyclic group of prime-power order' in Journal of Algebra, 323 (2010).)



Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring)  $R_{KG}$  has  $\mathbb{Z}$ -basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

 $\begin{array}{rcl} KG \text{-modules:} & U \oplus V & U \otimes_K V & V^{\otimes n} \\ \text{Elements of } R_{KG}: & U+V & UV & V^n \end{array}$ 

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring)  $R_{KG}$  has  $\mathbb{Z}$ -basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

 $\begin{array}{rcl} KG \text{-modules:} & U \oplus V & U \otimes_K V & V^{\otimes n} \\ \text{Elements of } R_{KG}: & U+V & UV & V^n \end{array}$ 

**Example.** Let  $G = \langle g \rangle$  be a cyclic *p*-group of order *q*. There are *q* indecomposable *KG*-modules up to isomorphism.

For r = 1, ..., q write  $V_r = KG/KG(g-1)^r$ . Then  $V_r$  is indecomposable of dimension r and hence  $R_{KG}$  has  $\mathbb{Z}$ -basis  $\{V_1, \ldots, V_q\}$ .

### Symmetric and exterior powers

Let V be a vector space over K with basis  $\{x_1, \ldots, x_r\}$ . Write  $S(V) = K[x_1, \ldots, x_r]$  (free associative commutative K-algebra),  $\Lambda(V)$  = free associative K-algebra on  $x_1, \ldots, x_r$  subject to  $x_i \wedge x_i = 0$  and  $x_i \wedge x_j = -x_j \wedge x_i$ .

### Symmetric and exterior powers

Let V be a vector space over K with basis  $\{x_1, \ldots, x_r\}$ . Write

 $S(V) = K[x_1, \ldots, x_r]$  (free associative commutative K-algebra),  $\Lambda(V) =$  free associative K-algebra on  $x_1, \ldots, x_r$  subject to  $x_i \wedge x_i = 0$  and  $x_i \wedge x_j = -x_j \wedge x_i$ .

Take decompositions into homogeneous components:  $S(V) = S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots,$   $\Lambda(V) = \Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$ 

These components are the symmetric powers and exterior powers of V.

## Symmetric and exterior powers

Let V be a vector space over K with basis  $\{x_1, \ldots, x_r\}$ . Write

 $S(V) = K[x_1, \ldots, x_r]$  (free associative commutative K-algebra),  $\Lambda(V) =$  free associative K-algebra on  $x_1, \ldots, x_r$  subject to  $x_i \wedge x_i = 0$  and  $x_i \wedge x_j = -x_j \wedge x_i$ .

Take decompositions into homogeneous components:  $S(V) = S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots,$   $\Lambda(V) = \Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$ 

These components are the symmetric powers and exterior powers of V.

If V is a KG-module then  $S^n(V)$ , and  $\Lambda^n(V)$  become KG-modules by linear substitutions.

 $S^0(V) \cong \Lambda^0(V) \cong K$ , written as 1 in  $R_{KG}$ .  $S^1(V) \cong \Lambda^1(V) \cong V$ .

#### Adams operations

Consider the power series ring  $(\mathbb{Q} \otimes R_{KG})[[t]]$ . Define  $\psi_S^n(V)$ and  $\psi_{\Lambda}^n(V)$  in  $\mathbb{Q} \otimes R_{KG}$  by

$$\psi_S^1(V)t + \frac{1}{2}\psi_S^2(V)t^2 + \frac{1}{3}\psi_S^3(V)t^3 + \cdots$$
  
= log(1 + S<sup>1</sup>(V)t + S<sup>2</sup>(V)t<sup>2</sup> + \cdots),

$$\psi_{\Lambda}^{1}(V)t - \frac{1}{2}\psi_{\Lambda}^{2}(V)t^{2} + \frac{1}{3}\psi_{\Lambda}^{3}(V)t^{3} - \cdots \\ = \log(1 + \Lambda^{1}(V)t + \Lambda^{2}(V)t^{2} + \cdots).$$

#### Adams operations

Consider the power series ring  $(\mathbb{Q} \otimes R_{KG})[[t]]$ . Define  $\psi_S^n(V)$ and  $\psi_{\Lambda}^n(V)$  in  $\mathbb{Q} \otimes R_{KG}$  by

$$\psi_S^1(V)t + \frac{1}{2}\psi_S^2(V)t^2 + \frac{1}{3}\psi_S^3(V)t^3 + \cdots$$
  
= log(1 + S<sup>1</sup>(V)t + S<sup>2</sup>(V)t<sup>2</sup> + \cdots),

$$\psi_{\Lambda}^{1}(V)t - \frac{1}{2}\psi_{\Lambda}^{2}(V)t^{2} + \frac{1}{3}\psi_{\Lambda}^{3}(V)t^{3} - \cdots \\ = \log(1 + \Lambda^{1}(V)t + \Lambda^{2}(V)t^{2} + \cdots).$$

It turns out that  $\psi_S^n(V), \psi_\Lambda^n(V) \in R_{KG}$  and

 $\psi_S^n(U+V) = \psi_S^n(U) + \psi_S^n(V), \quad \psi_\Lambda^n(U+V) = \psi_\Lambda^n(U) + \psi_\Lambda^n(V).$ 

Thus we get  $\mathbb{Z}$ -linear functions called the **Adams operations**:

$$\psi_S^n, \psi_\Lambda^n : R_{KG} \to R_{KG}.$$

The main properties of the Adams operations on  $R_{KG}$  were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

#### Linearity.

As we have seen,  $\psi_S^n$  and  $\psi_{\Lambda}^n$  are  $\mathbb{Z}$ -linear maps.

'Nice' behaviour when n is not divisible by p. For  $p \nmid n$ ,  $\psi_S^n = \psi_{\Lambda}^n$ , and  $\psi_S^n$  is a ring endomorphism of  $R_{KG}$ .

Factorisation property. If  $n = kp^d$  where  $p \nmid k$  then

$$\psi_S^n = \psi_S^k \circ \psi_S^{p^d}, \ \psi_\Lambda^n = \psi_\Lambda^k \circ \psi_\Lambda^{p^d}.$$

**Theorem 1.**  $\psi_{\Lambda}^n$  is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow *p*-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

**Theorem 1.**  $\psi_{\Lambda}^n$  is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow *p*-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

There is also a corresponding result for  $\psi_S^n$ .

**Theorem 2.**  $\psi_S^n$  is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.

# ごせいちょう ありがとう ございました

(Thank you for your attention.)

**Theorem 3.** Let G be a cyclic p-group of order q > 1. Then (i)  $\psi_{\Lambda}^{n} = \psi_{\Lambda}^{n+2q}$  for all n > 0. (ii)  $\psi_{S}^{n} = \psi_{S}^{n+2q}$  for all n > 0.

Note: If  $\psi_{\Lambda}^{n} = \psi_{\Lambda}^{n+m}$  for all n > 0 then  $2q \mid m$ , i.e. this is the minimum period for  $\psi_{\Lambda}^{n}$ .

The minimum period for  $\psi_S^n$  is 2q if p is odd and q if p is even.