Adams operations on the Green ring of a finite group

Marianne Johnson

Cambridge Algebra Seminar, 9th February 2011

Shameless self-promotion

Joint work with Professor Roger Bryant.

Shameless self-promotion

Joint work with Professor Roger Bryant.

'Periodicity of Adams operations on the Green ring of a finite group', Journal of Pure and Applied Algebra, 215 (2011), 989-1002.
'Adams operations on the Green ring of a cyclic group of prime-power order' Journal of Algebra, 323 (2010), 2818-2833.

The Green ring

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right $K G$-modules.

The Green ring

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right $K G$-modules.

The Green ring (or representation ring) $R_{K G}$ has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable $K G$-modules with multiplication coming from tensor product.

$$
K G \text {-modules: } \quad U \oplus V \quad U \otimes_{K} V \quad V^{\otimes n}
$$

Elements of $R_{K G}: \quad U+V \quad U V \quad V^{n}$

The Green ring

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right $K G$-modules.

The Green ring (or representation ring) $R_{K G}$ has \mathbb{Z}-basis consisting of the isomorphism classes of (f. d.) indecomposable $K G$-modules with multiplication coming from tensor product.

$$
\begin{array}{rccc}
K G \text {-modules: } & U \oplus V & U \otimes_{K} V & V^{\otimes n} \\
\text { Elements of } R_{K G}: & U+V & U V & V^{n}
\end{array}
$$

Notice that the one-dimensional module on which G acts trivially is the identity element in $R_{K G}$. Thus $K=1$ in $R_{K G}$.

The Green ring of a cyclic p-group

Let $G=\langle g\rangle$ be a cyclic p-group of order q.
There are q indecomposable $K G$-modules up to isomorphism.

The Green ring of a cyclic p-group

Let $G=\langle g\rangle$ be a cyclic p-group of order q.
There are q indecomposable $K G$-modules up to isomorphism.
For $r=1, \ldots, q$ write $V_{r}=K G / K G(g-1)^{r}$.
Then V_{r} is indecomposable of dimension r and hence $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, \ldots, V_{q}\right\}$.

The Green ring of a cyclic p-group

Let $G=\langle g\rangle$ be a cyclic p-group of order q.
There are q indecomposable $K G$-modules up to isomorphism.
For $r=1, \ldots, q$ write $V_{r}=K G / K G(g-1)^{r}$.
Then V_{r} is indecomposable of dimension r and hence $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, \ldots, V_{q}\right\}$.

Each indecomposable V_{r} has basis $\left\{y_{1}, \ldots, y_{r}\right\}$ and the action of g on V_{r} with respect to this basis is given by the Jordan block

$$
\left(\begin{array}{cccc}
1 & 1 & & \\
& \ddots & \ddots & \\
& & 1 & 1 \\
& & & 1
\end{array}\right)
$$

(Notice that V_{1} is the one-dimensional trivial module and V_{q} is the regular $K C$-module.)

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra), $\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra), $\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Take decompositions into homogeneous components:

$$
\begin{aligned}
& S(V)=S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots, \\
& \Lambda(V)=\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots
\end{aligned}
$$

These components are the symmetric powers and exterior powers of V.

Symmetric and exterior powers

Let V be a vector space over K with basis $\left\{x_{1}, \ldots, x_{r}\right\}$. Write $S(V)=K\left[x_{1}, \ldots, x_{r}\right]$ (free associative commutative K-algebra), $\Lambda(V)=$ free associative K-algebra on x_{1}, \ldots, x_{r} subject to

$$
x_{i} \wedge x_{i}=0 \text { and } x_{i} \wedge x_{j}=-x_{j} \wedge x_{i}
$$

Take decompositions into homogeneous components:

$$
\begin{aligned}
& S(V)=S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots \\
& \Lambda(V)=\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots
\end{aligned}
$$

These components are the symmetric powers and exterior powers of V.

If V is a $K G$ module then $S^{n}(V)$ and $\Lambda^{n}(V)$ become $K G$-modules by linear substitutions.

Properties of symmetric and exterior powers

The nth symmetric power $S^{n}(V)$ has K-basis

$$
\left\{x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}: 1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{n} \leqslant r\right\} .
$$

The nth exterior power $\Lambda^{n}(V)$ has K-basis

$$
\left\{x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{n}}: 1 \leqslant i_{1}<i_{2}<\cdots<i_{n} \leqslant r\right\}
$$

Thus $\operatorname{dim} S^{n}(V)=\binom{n+r-1}{n}$ and $\operatorname{dim} \Lambda^{n}(V)=\binom{r}{n}$.

Properties of symmetric and exterior powers

The nth symmetric power $S^{n}(V)$ has K-basis

$$
\left\{x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}: 1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{n} \leqslant r\right\} .
$$

The nth exterior power $\Lambda^{n}(V)$ has K-basis

$$
\left\{x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{n}}: 1 \leqslant i_{1}<i_{2}<\cdots<i_{n} \leqslant r\right\}
$$

Thus $\operatorname{dim} S^{n}(V)=\binom{n+r-1}{n}$ and $\operatorname{dim} \Lambda^{n}(V)=\binom{r}{n}$.
It is also easy to check that

$$
\begin{aligned}
S^{n}(U \oplus V) & \cong \bigoplus_{a+b=n} S^{a}(U) \otimes S^{b}(V) \\
\text { and } \Lambda^{n}(U \oplus V) & \cong \bigoplus_{a+b=n} \Lambda^{a}(U) \otimes \Lambda^{b}(V) .
\end{aligned}
$$

Motivating problem

We started with a finite-dimensional $K G$-module V and have created two families of $K G$-modules. What can we say about these new modules?

> Problem. Determine $S^{n}(V)$ and $\Lambda^{n}(V)$ up to isomorphism, i.e. as elements of $R_{K G}$.

Motivating problem

We started with a finite-dimensional $K G$-module V and have created two families of $K G$-modules. What can we say about these new modules?

> Problem. Determine $S^{n}(V)$ and $\Lambda^{n}(V)$ up to isomorphism, i.e. as elements of $R_{K G}$.

Examples.

$S^{0}(V) \cong \Lambda^{0}(V) \cong K$, written as 1 in $R_{K G}$.
$S^{1}(V) \cong \Lambda^{1}(V) \cong V$.
Note that $S^{n}(V) \nsubseteq \Lambda^{n}(V)$ for $n>1$, by dimensions.
In particular, $\Lambda^{n}(V)=0$ for $n>r$, whilst $S^{n}(V) \neq 0$ for all n.

Adams operations

Consider the power series ring $\left(\mathbb{Q} \otimes R_{K G}\right)[[t]]$. Define $\psi_{S}^{n}(V)$ and $\psi_{\Lambda}^{n}(V)$ in $\mathbb{Q} \otimes R_{K G}$ by

$$
\begin{gathered}
\hline \hline \psi_{S}^{1}(V) t+\frac{1}{2} \psi_{S}^{2}(V) t^{2}+\frac{1}{3} \psi_{S}^{3}(V) t^{3}+\cdots \\
\quad=\log \left(1+S^{1}(V) t+S^{2}(V) t^{2}+\cdots\right) \\
\psi_{\Lambda}^{1}(V) t-\frac{1}{2} \psi_{\Lambda}^{2}(V) t^{2}+\frac{1}{3} \psi_{\Lambda}^{3}(V) t^{3}-\cdots \\
\\
=\log \left(1+\Lambda^{1}(V) t+\Lambda^{2}(V) t^{2}+\cdots\right)
\end{gathered}
$$

Adams operations

Consider the power series ring $\left(\mathbb{Q} \otimes R_{K G}\right)[[t]]$.
Define $\psi_{S}^{n}(V)$ and $\psi_{\Lambda}^{n}(V)$ in $\mathbb{Q} \otimes R_{K G}$ by

$$
\begin{aligned}
& \psi_{S}^{1}(V) t+\frac{1}{2} \psi_{S}^{2}(V) t^{2}+\frac{1}{3} \psi_{S}^{3}(V) t^{3}+\cdots \\
& \quad=\log \left(1+S^{1}(V) t+S^{2}(V) t^{2}+\cdots\right) \\
& \begin{aligned}
& \psi_{\Lambda}^{1}(V) t-\frac{1}{2} \psi_{\Lambda}^{2}(V) t^{2}+\frac{1}{3} \psi_{\Lambda}^{3}(V) t^{3}-\cdots \\
&=\log \left(1+\Lambda^{1}(V) t+\Lambda^{2}(V) t^{2}+\cdots\right)
\end{aligned}
\end{aligned}
$$

It turns out that $\psi_{S}^{n}(V), \psi_{\Lambda}^{n}(V) \in R_{K G}$ and

$$
\psi_{S}^{n}(U+V)=\psi_{S}^{n}(U)+\psi_{S}^{n}(V), \quad \psi_{\Lambda}^{n}(U+V)=\psi_{\Lambda}^{n}(U)+\psi_{\Lambda}^{n}(V)
$$

Thus we get \mathbb{Z}-linear functions called the Adams operations:

$$
\psi_{S}^{n}, \psi_{\Lambda}^{n}: R_{K G} \rightarrow R_{K G}
$$

Adams operations

Clearly $\psi_{S}^{1}(V), \ldots, \psi_{S}^{n}(V)$ are polynomials in $S^{1}(V), \ldots, S^{n}(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in $R_{K G}$ is equivalent to knowledge of the Adams operations (assuming we know how to multiply in $R_{K G}$).

Adams operations

Clearly $\psi_{S}^{1}(V), \ldots, \psi_{S}^{n}(V)$ are polynomials in $S^{1}(V), \ldots, S^{n}(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in $R_{K G}$ is equivalent to knowledge of the Adams operations (assuming we know how to multiply in $R_{K G}$).

Problem. For given G and K determine ψ_{S}^{n} and ψ_{Λ}^{n}.

Adams operations

Clearly $\psi_{S}^{1}(V), \ldots, \psi_{S}^{n}(V)$ are polynomials in $S^{1}(V), \ldots, S^{n}(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in $R_{K G}$ is equivalent to knowledge of the Adams operations (assuming we know how to multiply in $R_{K G}$).

Problem. For given G and K determine ψ_{S}^{n} and ψ_{Λ}^{n}.
Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.

Adams operations

Clearly $\psi_{S}^{1}(V), \ldots, \psi_{S}^{n}(V)$ are polynomials in $S^{1}(V), \ldots, S^{n}(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in $R_{K G}$ is equivalent to knowledge of the Adams operations (assuming we know how to multiply in $R_{K G}$).

Problem. For given G and K determine ψ_{S}^{n} and ψ_{Λ}^{n}.
Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.

For now it is perhaps best to think of Adams operations as providing an attractive re-packaging of results on exterior and symmetric powers rather than a tool for proving theorems about these modules.

Properties of Adams operations

The main properties of the Adams operations on $R_{K G}$ were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

Linearity.
As we have seen, ψ_{S}^{n} and ψ_{Λ}^{n} are \mathbb{Z}-linear maps.
'Nice' behaviour when n is not divisible by p.
For $p \nmid n, \psi_{S}^{n}=\psi_{\Lambda}^{n}$, and ψ_{S}^{n} is a ring endomorphism of $R_{K G}$.
Factorisation property.
If $n=k p^{d}$ where $p \nmid k$ then

$$
\psi_{S}^{n}=\psi_{S}^{k} \circ \psi_{S}^{p^{d}}, \quad \psi_{\Lambda}^{n}=\psi_{\Lambda}^{k} \circ \psi_{\Lambda}^{p^{d}}
$$

Periodicity of Adams operations

Theorem 1. ψ_{Λ}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

Periodicity of Adams operations

Theorem 1. ψ_{Λ}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow p-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

There is also a corresponding result for ψ_{S}^{n}.
Theorem 2. ψ_{S}^{n} is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.

Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_{S}^{n} and ψ_{Λ}^{n} are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.

Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_{S}^{n} and ψ_{Λ}^{n} are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.
$|G|$ not divisible by p. ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n with minimum period e.

Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_{S}^{n} and ψ_{Λ}^{n} are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.
$|G|$ not divisible by p. ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n with minimum period e.
G a cyclic p-group.
(i) ψ_{S}^{n} is periodic in n with minimum period $\operatorname{lcm}(2, \mathrm{e})$;
(ii) ψ_{Λ}^{n} is periodic in n with minimum period $2 e$.

Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic. Thus ψ_{S}^{n} and ψ_{Λ}^{n} are both periodic in n and we would like to calculate the minimum periods. Let e denote the exponent of G.
$|G|$ not divisible by p. ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n with minimum period e.
G a cyclic p-group.
(i) ψ_{S}^{n} is periodic in n with minimum period $\operatorname{lcm}(2, \mathrm{e})$;
(ii) ψ_{Λ}^{n} is periodic in n with minimum period $2 e$.
G has proper cyclic Sylow p-subgroup.
We obtain a lower bound; ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n with minimum period divisible by $\operatorname{lcm}(2, e)$.

Cyclic p-groups

Let G be a cyclic p-group of order $q>1$.
Recall that $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, V_{2}, \ldots, V_{q}\right\}$.
What are $\psi_{S}^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$?
We start with the case where $p \nmid n$ and write $\psi^{n}=\psi_{S}^{n}=\psi_{\Lambda}^{n}$.

Cyclic p-groups

Let G be a cyclic p-group of order $q>1$.
Recall that $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, V_{2}, \ldots, V_{q}\right\}$.
What are $\psi_{S}^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$?
We start with the case where $p \nmid n$ and write $\psi^{n}=\psi_{S}^{n}=\psi_{\Lambda}^{n}$.
Theorem 3. Suppose that $p \nmid n$ and let $r \in\{1, \ldots, q\}$. Write $r=k p^{i}+s$ where $1 \leqslant k \leqslant p-1$ and $1 \leqslant s \leqslant p^{i}$.
Then there is a formula (involving only elementary arithmetic) giving $\psi^{n}\left(V_{r}\right)$ in terms of $\psi^{n}\left(V_{s}\right)$ and $\psi^{n}\left(V_{p^{i}-s}\right)$.
(Here we take $V_{0}=0$ to cover the case where $p^{i}-s=0$.) This theorem gives $\psi^{n}\left(V_{r}\right)$ recursively on r.

Cyclic p-groups

Let G be a cyclic p-group of order $q>1$.
Recall that $R_{K G}$ has \mathbb{Z}-basis $\left\{V_{1}, V_{2}, \ldots, V_{q}\right\}$.
What are $\psi_{S}^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$?
We start with the case where $p \nmid n$ and write $\psi^{n}=\psi_{S}^{n}=\psi_{\Lambda}^{n}$.
Theorem 3. Suppose that $p \nmid n$ and let $r \in\{1, \ldots, q\}$. Write $r=k p^{i}+s$ where $1 \leqslant k \leqslant p-1$ and $1 \leqslant s \leqslant p^{i}$.
Then there is a formula (involving only elementary arithmetic) giving $\psi^{n}\left(V_{r}\right)$ in terms of $\psi^{n}\left(V_{s}\right)$ and $\psi^{n}\left(V_{p^{i}-s}\right)$.
(Here we take $V_{0}=0$ to cover the case where $p^{i}-s=0$.) This theorem gives $\psi^{n}\left(V_{r}\right)$ recursively on r.

The proof uses and extends work of Almkvist \& Fossum, Kouwenhoven, Hughes \& Kemper, and Gow \& Laffey.

Patterns for cyclic p-groups

When we calculated ψ^{n} using Theorem 3 we noticed some interesting patterns, which we were later able to prove.

Example. Let $G=C_{25}$ where $p=5$.

$$
\begin{aligned}
\psi^{3}\left(V_{1}\right) & =V_{1} \\
\psi^{3}\left(V_{2}\right) & =V_{4}-V_{2} \\
\psi^{3}\left(V_{3}\right) & =V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{4}\right) & =V_{4} \\
\psi^{3}\left(V_{5}\right) & =V_{5} \\
\psi^{3}\left(V_{6}\right) & =V_{16}-V_{14}+V_{4} \\
\psi^{3}\left(V_{7}\right) & =V_{19}-V_{17}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{8}\right) & =V_{20}-V_{18}+V_{16}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{9}\right) & =V_{19}-V_{11}+V_{1} \\
\psi^{3}\left(V_{10}\right) & =V_{20}-V_{10} \\
\psi^{3}\left(V_{11}\right) & =V_{21}-V_{11}+V_{1} \\
\psi^{3}\left(V_{12}\right) & =V_{24}-V_{22}+V_{20}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{13}\right) & =V_{25}-V_{23}+V_{21}-V_{15}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1}
\end{aligned}
$$

Patterns for cyclic p-groups

When we calculated ψ^{n} using Theorem 4 we noticed some interesting patterns, which we were later able to prove.

Example. Let $G=C_{25}$ where $p=5$.

$$
\begin{aligned}
\psi^{3}\left(V_{1}\right) & =V_{1} \\
\psi^{3}\left(V_{2}\right) & =V_{4}-V_{2} \\
\psi^{3}\left(V_{3}\right) & =V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{4}\right) & =V_{4} \\
\psi^{3}\left(V_{5}\right) & =V_{5} \\
\psi^{3}\left(V_{6}\right) & =V_{16}-V_{14}+V_{4} \\
\psi^{3}\left(V_{7}\right) & =V_{19}-V_{17}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1} \\
\psi^{3}\left(V_{8}\right) & =V_{20}-V_{18}+V_{16}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{9}\right) & =V_{19}-V_{11}+V_{1} \\
\psi^{3}\left(V_{10}\right) & =V_{20}-V_{10} \\
\psi^{3}\left(V_{11}\right) & =V_{21}-V_{11}+V_{1} \\
\psi^{3}\left(V_{12}\right) & =V_{24}-V_{22}+V_{20}-V_{14}+V_{12}-V_{10}+V_{4}-V_{2} \\
\psi^{3}\left(V_{13}\right) & =V_{25}-V_{23}+V_{21}-V_{15}+V_{13}-V_{11}+V_{5}-V_{3}+V_{1}
\end{aligned}
$$

Heller translates

Recall that for a $K G$-module $V, \Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \rightarrow V$ where $P(V)$ is the projective cover of V.
Hence

$$
\Omega\left(V_{r}\right)=V_{q-r} \text { for } r=1, \ldots, q
$$

with the convention that $V_{0}=0$.

Heller translates

Recall that for a $K G$-module $V, \Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \rightarrow V$ where $P(V)$ is the projective cover of V.
Hence

$$
\Omega\left(V_{r}\right)=V_{q-r} \text { for } r=1, \ldots, q
$$

with the convention that $V_{0}=0$.
We extend Ω to a \mathbb{Z}-linear map $\Omega: R_{K G} \rightarrow R_{K G}$. Also we write Ω^{n} for the composite of Ω taken n times. It is easily seen that

$$
\Omega^{n}(V)= \begin{cases}V+a V_{q} & \text { if } n \text { is even } \\ \Omega(V)+a V_{q} & \text { if } n \text { is odd }\end{cases}
$$

where a is some integer.

Reduction of ψ_{S}^{n} to ψ_{Λ}^{n}

Peter Symonds (2007) gave a recursive way of finding $S^{n}\left(V_{r}\right)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Reduction of ψ_{S}^{n} to ψ_{Λ}^{n}

Peter Symonds (2007) gave a recursive way of finding $S^{n}\left(V_{r}\right)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q / p \leqslant r \leqslant q$. Then, for all n,

$$
\psi_{S}^{n}\left(V_{r}\right)=(-1)^{n-1} \Omega^{n}\left(\psi_{\Lambda}^{n}\left(V_{q-r}\right)\right)+(n, q) V_{q /(n, q)}+c V_{q}
$$

where the integer c may be calculated by a dimension count if $\psi_{\Lambda}^{n}\left(V_{q-r}\right)$ is known and (n, q) denotes the $g c d$ of n and q.

Reduction of ψ_{S}^{n} to ψ_{Λ}^{n}

Peter Symonds (2007) gave a recursive way of finding $S^{n}\left(V_{r}\right)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q / p \leqslant r \leqslant q$. Then, for all n,

$$
\psi_{S}^{n}\left(V_{r}\right)=(-1)^{n-1} \Omega^{n}\left(\psi_{\Lambda}^{n}\left(V_{q-r}\right)\right)+(n, q) V_{q /(n, q)}+c V_{q}
$$

where the integer c may be calculated by a dimension count if $\psi_{\Lambda}^{n}\left(V_{q-r}\right)$ is known and (n, q) denotes the gcd of n and q.

This is easily seen to give ψ_{S}^{n} in terms of ψ_{Λ}^{n}.
(For $r<q / p$ the module V_{r} may be regarded as a module for a proper factor group of G.)

Recap

- The Adams operations are certain linear maps on the Green ring $R_{K G}$ that encapsulate the behaviour of symmetric and exterior powers.

Recap

- The Adams operations are certain linear maps on the Green ring $R_{K G}$ that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.

Recap

- The Adams operations are certain linear maps on the Green ring $R_{K G}$ that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.
- We have shown that ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.

Recap

- The Adams operations are certain linear maps on the Green ring $R_{K G}$ that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.
- We have shown that ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate $\psi_{S}^{n}=\psi_{\Lambda}^{n}$ for n not divisible by p. This recursion gives rise to some nice patterns.

Recap

- The Adams operations are certain linear maps on the Green ring $R_{K G}$ that encapsulate the behaviour of symmetric and exterior powers.
- The Adams operations have many nice properties.
- We have shown that ψ_{S}^{n} and ψ_{Λ}^{n} are periodic in n if and only if the Sylow p-subgroups of G are cyclic. We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate $\psi_{S}^{n}=\psi_{\Lambda}^{n}$ for n not divisible by p. This recursion gives rise to some nice patterns.
- For cyclic p-groups we also showed that $\psi_{S}^{n}\left(V_{r}\right)$ can be expressed in terms of $\psi_{\Lambda}^{n}\left(V_{q-r}\right)$, where V_{q-r} is the Heller translate of V_{r}.

Cyclic 2-groups

The determination of $\Lambda^{n}\left(V_{r}\right)$ and $\psi_{\Lambda}^{n}\left(V_{r}\right)$ for a cyclic p-group is still open in general. Frank Himstedt and Peter Symonds have recently discovered a way of evaluating $\Lambda^{n}\left(V_{r}\right)$ in the case $p=2$. This leads to a description of ψ_{Λ}^{n} as follows.

- It can be shown that ψ_{Λ}^{n} is equal to the identity function for all odd n.
- Also, if $n=k 2^{d}$ where k is odd then $\psi_{\Lambda}^{n}=\psi_{\Lambda}^{k} \circ \psi_{\Lambda}^{2^{d}}$.
- Thus it remains to describe $\psi_{\Lambda}^{2^{d}}$ for $d \geqslant 1$.

Theorem 5. Let G be a cyclic 2-group.
Write $r=2^{i}+s$ where $1 \leqslant s \leqslant 2^{i}$. Then

$$
\begin{aligned}
\psi_{\Lambda}^{2}\left(V_{r}\right) & =2 V_{2^{i+1}}-2 V_{2^{i+1}-s}+\psi_{\Lambda}^{2}\left(V_{2^{i}-s}\right) \\
\text { and } \psi_{\Lambda}^{2^{d}}\left(V_{r}\right) & =2 \psi_{\Lambda}^{2^{d-1}}\left(V_{s}\right)+\psi_{\Lambda}^{2^{d}}\left(V_{2^{i}-s}\right) \text { for } d \geqslant 2
\end{aligned}
$$

(ψ_{Λ}^{2} can also be obtained from work of Gow and Laffey (2006)).

