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The Green ring

Let K be a field of prime characteristic p and let G be a finite
group. We consider finite-dimensional right KG-modules.

The Green ring (or representation ring) RKG has Z-basis
consisting of the isomorphism classes of (f. d.) indecomposable
KG-modules with multiplication coming from tensor product.

KG-modules: U ⊕ V U ⊗K V V ⊗n

Elements of RKG : U + V UV V n

Notice that the one-dimensional module on which G acts
trivially is the identity element in RKG. Thus K = 1 in RKG.
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The Green ring of a cyclic p-group

Let G = 〈g〉 be a cyclic p-group of order q.
There are q indecomposable KG-modules up to isomorphism.

For r = 1, . . . , q write Vr = KG/KG(g − 1)r.
Then Vr is indecomposable of dimension r and hence RKG has
Z-basis {V1, . . . , Vq}.

Each indecomposable Vr has basis {y1, . . . , yr} and the action of
g on Vr with respect to this basis is given by the Jordan block

1 1
. . . . . .

1 1
1

 .

(Notice that V1 is the one-dimensional trivial module and Vq is
the regular KC-module.)
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Symmetric and exterior powers

Let V be a vector space over K with basis {x1, . . . , xr}. Write

S(V ) = K[x1, . . . , xr] (free associative commutative K-algebra),
Λ(V ) = free associative K-algebra on x1, . . . , xr subject to

Λ(V ) = xi ∧ xi = 0 and xi ∧ xj = −xj ∧ xi.

Take decompositions into homogeneous components:
S(V ) = S0(V )⊕ S1(V )⊕ · · · ⊕ Sn(V )⊕ · · · ,
Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V )⊕ · · ·

These components are the symmetric powers and exterior
powers of V .

If V is a KG module then Sn(V ) and Λn(V ) become
KG-modules by linear substitutions.
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Properties of symmetric and exterior powers

The nth symmetric power Sn(V ) has K-basis

{xi1xi2 · · ·xin : 1 6 i1 6 i2 6 · · · 6 in 6 r}.

The nth exterior power Λn(V ) has K-basis

{xi1 ∧ xi2 ∧ · · · ∧ xin : 1 6 i1 < i2 < · · · < in 6 r}.

Thus dim Sn(V ) =
(
n+r−1

n

)
and dim Λn(V ) =

(
r
n

)
.

It is also easy to check that

Sn(U ⊕ V ) ∼=
⊕

a+b=n

Sa(U)⊗ Sb(V )

and Λn(U ⊕ V ) ∼=
⊕

a+b=n

Λa(U)⊗ Λb(V ).
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Motivating problem

We started with a finite-dimensional KG-module V and have
created two families of KG-modules. What can we say about
these new modules?

Problem. Determine Sn(V ) and Λn(V ) up to isomorphism,
i.e. as elements of RKG.

Examples.
S0(V ) ∼= Λ0(V ) ∼= K, written as 1 in RKG.
S1(V ) ∼= Λ1(V ) ∼= V .

Note that Sn(V ) � Λn(V ) for n > 1, by dimensions.
In particular, Λn(V ) = 0 for n > r, whilst Sn(V ) 6= 0 for all n.
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Adams operations

Consider the power series ring (Q⊗RKG)[[t]].
Define ψn

S(V ) and ψn
Λ(V ) in Q⊗RKG by

ψ1
S(V )t+ 1

2ψ
2
S(V )t2 + 1

3ψ
3
S(V )t3 + · · ·

= log(1 + S1(V )t+ S2(V )t2 + · · · ),

ψ1
Λ(V )t− 1

2ψ
2
Λ(V )t2 + 1

3ψ
3
Λ(V )t3 − · · ·

= log(1 + Λ1(V )t+ Λ2(V )t2 + · · · ).

It turns out that ψn
S(V ), ψn

Λ(V ) ∈ RKG and

ψn
S(U + V ) = ψn

S(U) + ψn
S(V ), ψn

Λ(U + V ) = ψn
Λ(U) + ψn

Λ(V ).

Thus we get Z-linear functions called the Adams operations:

ψn
S , ψ

n
Λ : RKG → RKG.
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Adams operations

Clearly ψ1
S(V ), . . . , ψn

S(V ) are polynomials in S1(V ), . . . , Sn(V )
and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in RKG

is equivalent to knowledge of the Adams operations
(assuming we know how to multiply in RKG).

Problem. For given G and K determine ψn
S and ψn

Λ.

Of course, this is a bit of a cheat! Our only definition of the
Adams operations involves the symmetric and exterior powers.

For now it is perhaps best to think of Adams operations as
providing an attractive re-packaging of results on exterior and
symmetric powers rather than a tool for proving theorems
about these modules.
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Properties of Adams operations

The main properties of the Adams operations on RKG were
given by Benson (1984) and RMB (2003) following ideas of
Adams, Frobenius and others.

Linearity.
As we have seen, ψn

S and ψn
Λ are Z-linear maps.

‘Nice’ behaviour when n is not divisible by p.
For p - n, ψn

S = ψn
Λ, and ψn

S is a ring endomorphism of RKG.

Factorisation property.
If n = kpd where p - k then

ψn
S = ψk

S ◦ ψ
pd

S , ψn
Λ = ψk

Λ ◦ ψ
pd

Λ .
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Periodicity of Adams operations

Theorem 1. ψn
Λ is periodic in n if and only if the Sylow

p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the
Sylow p-subgroups are cyclic then there are only finitely many
indecomposables (Higman) and the Green ring is semi-simple
(Green and O’Reilly).

There is also a corresponding result for ψn
S .

Theorem 2. ψn
S is periodic in n if and only if the Sylow

p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of
Symonds (2007), based on previous work of Karagueuzian and
Symonds.
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Minimum period

Suppose now that the Sylow p-subgroups of G are cyclic.
Thus ψn

S and ψn
Λ are both periodic in n and we would like to

calculate the minimum periods. Let e denote the exponent of G.

|G| not divisible by p.
ψn

S and ψn
Λ are periodic in n with minimum period e.

G a cyclic p-group.

(i) ψn
S is periodic in n with minimum period lcm(2, e);

(ii) ψn
Λ is periodic in n with minimum period 2e.

G has proper cyclic Sylow p-subgroup.
We obtain a lower bound; ψn

S and ψn
Λ are periodic in n with

minimum period divisible by lcm(2, e).
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Cyclic p-groups

Let G be a cyclic p-group of order q > 1.
Recall that RKG has Z-basis {V1, V2, . . . , Vq}.

What are ψn
S(Vr) and ψn

Λ(Vr)?
We start with the case where p - n and write ψn = ψn

S = ψn
Λ.

Theorem 3. Suppose that p - n and let r ∈ {1, . . . , q}.
Write r = kpi + s where 1 6 k 6 p− 1 and 1 6 s 6 pi.
Then there is a formula (involving only elementary arithmetic)
giving ψn(Vr) in terms of ψn(Vs) and ψn(Vpi−s).

(Here we take V0 = 0 to cover the case where pi − s = 0.)
This theorem gives ψn(Vr) recursively on r.

The proof uses and extends work of Almkvist & Fossum,
Kouwenhoven, Hughes & Kemper, and Gow & Laffey.
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Patterns for cyclic p-groups

When we calculated ψn using Theorem 3 we noticed some
interesting patterns, which we were later able to prove.

Example. Let G = C25 where p = 5.

ψ3(V1) = V1

ψ3(V2) = V4 − V2

ψ3(V3) = V5 − V3 + V1

ψ3(V4) = V4

ψ3(V5) = V5

ψ3(V6) = V16 − V14 + V4

ψ3(V7) = V19 − V17 + V13 − V11 + V5 − V3 + V1

ψ3(V8) = V20 − V18 + V16 − V14 + V12 − V10 + V4 − V2

ψ3(V9) = V19 − V11 + V1

ψ3(V10) = V20 − V10

ψ3(V11) = V21 − V11 + V1

ψ3(V12) = V24 − V22 + V20 − V14 + V12 − V10 + V4 − V2

ψ3(V13) = V25 − V23 + V21 − V15 + V13 − V11 + V5 − V3 + V1
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Heller translates

Recall that for a KG-module V , Ω(V ) is defined up to
isomorphism as the kernel of any map P (V )� V where P (V )
is the projective cover of V .
Hence

Ω(Vr) = Vq−r for r = 1, . . . , q

with the convention that V0 = 0.

We extend Ω to a Z-linear map Ω : RKG → RKG. Also we write
Ωn for the composite of Ω taken n times. It is easily seen that

Ωn(V ) =
{
V + aVq if n is even,
Ω(V ) + aVq if n is odd,

where a is some integer.
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Reduction of ψnS to ψnΛ

Peter Symonds (2007) gave a recursive way of finding Sn(Vr) in
terms of exterior powers. His result leads to a corresponding
result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that q/p 6 r 6 q. Then, for all n,

ψn
S(Vr) = (−1)n−1Ωn(ψn

Λ(Vq−r)) + (n, q)Vq/(n,q) + cVq

where the integer c may be calculated by a dimension count if
ψn

Λ(Vq−r) is known and (n, q) denotes the gcd of n and q.

This is easily seen to give ψn
S in terms of ψn

Λ.
(For r < q/p the module Vr may be regarded as a module for a
proper factor group of G.)

17/ 18



Reduction of ψnS to ψnΛ

Peter Symonds (2007) gave a recursive way of finding Sn(Vr) in
terms of exterior powers. His result leads to a corresponding
result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that q/p 6 r 6 q. Then, for all n,

ψn
S(Vr) = (−1)n−1Ωn(ψn

Λ(Vq−r)) + (n, q)Vq/(n,q) + cVq

where the integer c may be calculated by a dimension count if
ψn

Λ(Vq−r) is known and (n, q) denotes the gcd of n and q.

This is easily seen to give ψn
S in terms of ψn

Λ.
(For r < q/p the module Vr may be regarded as a module for a
proper factor group of G.)

17/ 18



Reduction of ψnS to ψnΛ

Peter Symonds (2007) gave a recursive way of finding Sn(Vr) in
terms of exterior powers. His result leads to a corresponding
result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that q/p 6 r 6 q. Then, for all n,

ψn
S(Vr) = (−1)n−1Ωn(ψn

Λ(Vq−r)) + (n, q)Vq/(n,q) + cVq

where the integer c may be calculated by a dimension count if
ψn

Λ(Vq−r) is known and (n, q) denotes the gcd of n and q.

This is easily seen to give ψn
S in terms of ψn

Λ.
(For r < q/p the module Vr may be regarded as a module for a
proper factor group of G.)
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Recap

I The Adams operations are certain linear maps on the
Green ring RKG that encapsulate the behaviour of
symmetric and exterior powers.

I The Adams operations have many nice properties.
I We have shown that ψn

S and ψn
Λ are periodic in n if and

only if the Sylow p-subgroups of G are cyclic.
We gave a lower bound for the minimum periods.

I When G is a cyclic p-group we gave recursive formula to
calculate ψn

S = ψn
Λ for n not divisible by p.

This recursion gives rise to some nice patterns.
I For cyclic p-groups we also showed that ψn

S(Vr) can be
expressed in terms of ψn

Λ(Vq−r), where Vq−r is the Heller
translate of Vr.
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Cyclic 2-groups

The determination of Λn(Vr) and ψn
Λ(Vr) for a cyclic p-group is

still open in general. Frank Himstedt and Peter Symonds have
recently discovered a way of evaluating Λn(Vr) in the case
p = 2. This leads to a description of ψn

Λ as follows.

I It can be shown that ψn
Λ is equal to the identity function

for all odd n.
I Also, if n = k2d where k is odd then ψn

Λ = ψk
Λ ◦ ψ2d

Λ .
I Thus it remains to describe ψ2d

Λ for d > 1.

Theorem 5. Let G be a cyclic 2-group.
Write r = 2i + s where 1 6 s 6 2i. Then

ψ2
Λ(Vr) = 2V2i+1 − 2V2i+1−s + ψ2

Λ(V2i−s)

and ψ2d

Λ (Vr) = 2ψ2d−1

Λ (Vs) + ψ2d

Λ (V2i−s) for d > 2.

(ψ2
Λ can also be obtained from work of Gow and Laffey (2006)).
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