Adams operations on the Green ring of a finite group

Marianne Johnson

Cambridge Algebra Seminar, 9th February 2011

Shameless self-promotion

Joint work with Professor Roger Bryant.

Shameless self-promotion

Joint work with Professor Roger Bryant.

'Periodicity of Adams operations on the Green ring of a finite group', Journal of Pure and Applied Algebra, 215 (2011), 989–1002.

'Adams operations on the Green ring of a cyclic group of prime-power order' Journal of Algebra, 323 (2010), 2818–2833.

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring) R_{KG} has \mathbb{Z} -basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

 $\begin{array}{ccc} KG \text{-modules:} & U \oplus V & U \otimes_K V & V^{\otimes n} \\ \text{Elements of } R_{KG}: & U+V & UV & V^n \end{array}$

Let K be a field of prime characteristic p and let G be a finite group. We consider finite-dimensional right KG-modules.

The **Green ring** (or representation ring) R_{KG} has \mathbb{Z} -basis consisting of the isomorphism classes of (f. d.) indecomposable KG-modules with multiplication coming from tensor product.

 $\begin{array}{ccc} KG \text{-modules:} & U \oplus V & U \otimes_K V & V^{\otimes n} \\ \text{Elements of } R_{KG}: & U+V & UV & V^n \end{array}$

Notice that the one-dimensional module on which G acts trivially is the identity element in R_{KG} . Thus K = 1 in R_{KG} .

The Green ring of a cyclic *p*-group

Let $G = \langle g \rangle$ be a cyclic *p*-group of order *q*. There are *q* indecomposable *KG*-modules up to isomorphism.

The Green ring of a cyclic *p*-group

Let $G = \langle g \rangle$ be a cyclic *p*-group of order *q*. There are *q* indecomposable *KG*-modules up to isomorphism.

For r = 1, ..., q write $V_r = KG/KG(g-1)^r$. Then V_r is indecomposable of dimension r and hence R_{KG} has \mathbb{Z} -basis $\{V_1, \ldots, V_q\}$.

The Green ring of a cyclic *p*-group

Let $G = \langle g \rangle$ be a cyclic *p*-group of order *q*. There are *q* indecomposable *KG*-modules up to isomorphism.

For r = 1, ..., q write $V_r = KG/KG(g-1)^r$. Then V_r is indecomposable of dimension r and hence R_{KG} has \mathbb{Z} -basis $\{V_1, \ldots, V_q\}$.

Each indecomposable V_r has basis $\{y_1, \ldots, y_r\}$ and the action of g on V_r with respect to this basis is given by the Jordan block

$$\left(\begin{array}{cccc} 1 & 1 & & \\ & \ddots & \ddots & \\ & & 1 & 1 \\ & & & & 1 \end{array}\right)$$

(Notice that V_1 is the one-dimensional trivial module and V_q is the regular KC-module.)

Symmetric and exterior powers

Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write $S(V) = K[x_1, \ldots, x_r]$ (free associative commutative K-algebra), $\Lambda(V) =$ free associative K-algebra on x_1, \ldots, x_r subject to

 $x_i \wedge x_i = 0$ and $x_i \wedge x_j = -x_j \wedge x_i$.

Symmetric and exterior powers

Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write

 $S(V) = K[x_1, \ldots, x_r]$ (free associative commutative K-algebra), $\Lambda(V) =$ free associative K-algebra on x_1, \ldots, x_r subject to

$$x_i \wedge x_i = 0$$
 and $x_i \wedge x_j = -x_j \wedge x_i$.

Take decompositions into homogeneous components: $S(V) = S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots,$ $\Lambda(V) = \Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$

These components are the symmetric powers and exterior powers of V.

Symmetric and exterior powers

Let V be a vector space over K with basis $\{x_1, \ldots, x_r\}$. Write

 $S(V) = K[x_1, \ldots, x_r]$ (free associative commutative K-algebra), $\Lambda(V) =$ free associative K-algebra on x_1, \ldots, x_r subject to

$$x_i \wedge x_i = 0$$
 and $x_i \wedge x_j = -x_j \wedge x_i$.

Take decompositions into homogeneous components: $S(V) = S^{0}(V) \oplus S^{1}(V) \oplus \cdots \oplus S^{n}(V) \oplus \cdots,$ $\Lambda(V) = \Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \cdots \oplus \Lambda^{n}(V) \oplus \cdots$

These components are the symmetric powers and exterior powers of V.

If V is a KG module then $S^n(V)$ and $\Lambda^n(V)$ become KG-modules by linear substitutions.

Properties of symmetric and exterior powers

The *n*th symmetric power $S^n(V)$ has *K*-basis

$$\{x_{i_1}x_{i_2}\cdots x_{i_n}: 1\leqslant i_1\leqslant i_2\leqslant \cdots \leqslant i_n\leqslant r\}.$$

The *n*th exterior power $\Lambda^n(V)$ has *K*-basis

$$\{x_{i_1} \wedge x_{i_2} \wedge \dots \wedge x_{i_n} : 1 \leq i_1 < i_2 < \dots < i_n \leq r\}.$$

Thus dim $S^n(V) = \binom{n+r-1}{n}$ and dim $\Lambda^n(V) = \binom{r}{n}$.

Properties of symmetric and exterior powers

The *n*th symmetric power $S^n(V)$ has *K*-basis

$$\{x_{i_1}x_{i_2}\cdots x_{i_n}: 1\leqslant i_1\leqslant i_2\leqslant \cdots \leqslant i_n\leqslant r\}.$$

The *n*th exterior power $\Lambda^n(V)$ has *K*-basis

$$\{x_{i_1} \wedge x_{i_2} \wedge \dots \wedge x_{i_n} : 1 \leq i_1 < i_2 < \dots < i_n \leq r\}.$$

Thus dim $S^n(V) = \binom{n+r-1}{n}$ and dim $\Lambda^n(V) = \binom{r}{n}$.

It is also easy to check that

$$S^{n}(U \oplus V) \cong \bigoplus_{a+b=n} S^{a}(U) \otimes S^{b}(V)$$

and $\Lambda^{n}(U \oplus V) \cong \bigoplus_{a+b=n} \Lambda^{a}(U) \otimes \Lambda^{b}(V).$

We started with a finite-dimensional KG-module V and have created two families of KG-modules. What can we say about these new modules?

Problem. Determine $S^n(V)$ and $\Lambda^n(V)$ up to isomorphism, i.e. as elements of R_{KG} .

We started with a finite-dimensional KG-module V and have created two families of KG-modules. What can we say about these new modules?

Problem. Determine $S^n(V)$ and $\Lambda^n(V)$ up to isomorphism, i.e. as elements of R_{KG} .

Examples. $S^0(V) \cong \Lambda^0(V) \cong K$, written as 1 in R_{KG} . $S^1(V) \cong \Lambda^1(V) \cong V$.

Note that $S^n(V) \ncong \Lambda^n(V)$ for n > 1, by dimensions. In particular, $\Lambda^n(V) = 0$ for n > r, whilst $S^n(V) \neq 0$ for all n.

Consider the power series ring $(\mathbb{Q} \otimes R_{KG})[[t]]$. Define $\psi_S^n(V)$ and $\psi_{\Lambda}^n(V)$ in $\mathbb{Q} \otimes R_{KG}$ by

$$\begin{split} \psi_{S}^{1}(V)t + \frac{1}{2}\psi_{S}^{2}(V)t^{2} + \frac{1}{3}\psi_{S}^{3}(V)t^{3} + \cdots \\ &= \log(1 + S^{1}(V)t + S^{2}(V)t^{2} + \cdots), \\ \psi_{\Lambda}^{1}(V)t - \frac{1}{2}\psi_{\Lambda}^{2}(V)t^{2} + \frac{1}{3}\psi_{\Lambda}^{3}(V)t^{3} - \cdots \\ &= \log(1 + \Lambda^{1}(V)t + \Lambda^{2}(V)t^{2} + \cdots). \end{split}$$

Consider the power series ring $(\mathbb{Q} \otimes R_{KG})[[t]]$. Define $\psi_S^n(V)$ and $\psi_{\Lambda}^n(V)$ in $\mathbb{Q} \otimes R_{KG}$ by

 $\begin{array}{rcl}
\psi_{S}^{1}(V)t + \frac{1}{2}\psi_{S}^{2}(V)t^{2} + \frac{1}{3}\psi_{S}^{3}(V)t^{3} + \cdots \\
&= \log(1 + S^{1}(V)t + S^{2}(V)t^{2} + \cdots), \\
\psi_{\Lambda}^{1}(V)t - \frac{1}{2}\psi_{\Lambda}^{2}(V)t^{2} + \frac{1}{3}\psi_{\Lambda}^{3}(V)t^{3} - \cdots \\
&= \log(1 + \Lambda^{1}(V)t + \Lambda^{2}(V)t^{2} + \cdots).
\end{array}$

It turns out that $\psi_S^n(V), \psi_\Lambda^n(V) \in R_{KG}$ and $\psi_S^n(U+V) = \psi_S^n(U) + \psi_S^n(V), \quad \psi_\Lambda^n(U+V) = \psi_\Lambda^n(U) + \psi_\Lambda^n(V).$ Thus we get \mathbb{Z} -linear functions called the **Adams operations**:

 $\psi_S^n, \psi_\Lambda^n : R_{KG} \to R_{KG}.$

Clearly $\psi_S^1(V), \ldots, \psi_S^n(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is **equivalent** to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Clearly $\psi_S^1(V), \ldots, \psi_S^n(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is **equivalent** to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Problem. For given G and K determine ψ_S^n and ψ_{Λ}^n .

Clearly $\psi_S^1(V), \ldots, \psi_S^n(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is **equivalent** to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Problem. For given G and K determine ψ_S^n and ψ_{Λ}^n .

Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.

Clearly $\psi_S^1(V), \ldots, \psi_S^n(V)$ are polynomials in $S^1(V), \ldots, S^n(V)$ and vice versa. Similarly for the exterior powers.

Thus knowledge of the symmetric and exterior powers in R_{KG} is **equivalent** to knowledge of the Adams operations (assuming we know how to multiply in R_{KG}).

Problem. For given G and K determine ψ_S^n and ψ_{Λ}^n .

Of course, this is a bit of a cheat! Our only definition of the Adams operations involves the symmetric and exterior powers.

For now it is perhaps best to think of Adams operations as providing an attractive re-packaging of results on exterior and symmetric powers rather than a tool for proving theorems about these modules. The main properties of the Adams operations on R_{KG} were given by Benson (1984) and RMB (2003) following ideas of Adams, Frobenius and others.

Linearity.

As we have seen, ψ_S^n and ψ_{Λ}^n are \mathbb{Z} -linear maps.

'Nice' behaviour when *n* is not divisible by *p*. For $p \nmid n$, $\psi_S^n = \psi_{\Lambda}^n$, and ψ_S^n is a ring endomorphism of R_{KG} .

Factorisation property. If $n = kp^d$ where $p \nmid k$ then

$$\psi_S^n = \psi_S^k \circ \psi_S^{p^d}, \ \psi_\Lambda^n = \psi_\Lambda^k \circ \psi_\Lambda^{p^d}.$$

Theorem 1. ψ_{Λ}^n is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow *p*-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

Theorem 1. ψ_{Λ}^n is periodic in *n* if and only if the Sylow *p*-subgroups of *G* are cyclic.

The proof is fairly elementary, relying on the facts that if the Sylow *p*-subgroups are cyclic then there are only finitely many indecomposables (Higman) and the Green ring is semi-simple (Green and O'Reilly).

There is also a corresponding result for ψ_S^n .

Theorem 2. ψ_S^n is periodic in n if and only if the Sylow p-subgroups of G are cyclic.

The proof of this is more difficult. It relies on deep work of Symonds (2007), based on previous work of Karagueuzian and Symonds.

Minimum period

Suppose now that the Sylow *p*-subgroups of *G* are cyclic. Thus ψ_S^n and ψ_{Λ}^n are both periodic in *n* and we would like to calculate the minimum periods. Let *e* denote the exponent of *G*. Suppose now that the Sylow *p*-subgroups of *G* are cyclic. Thus ψ_S^n and ψ_{Λ}^n are both periodic in *n* and we would like to calculate the minimum periods. Let *e* denote the exponent of *G*.

- |G| not divisible by p.
- ψ_S^n and ψ_{Λ}^n are periodic in *n* with minimum period *e*.

Suppose now that the Sylow *p*-subgroups of *G* are cyclic. Thus ψ_S^n and ψ_{Λ}^n are both periodic in *n* and we would like to calculate the minimum periods. Let *e* denote the exponent of *G*.

|G| not divisible by p.

 ψ^n_S and ψ^n_Λ are periodic in n with minimum period e.

G a cyclic p-group.

(i) ψ_S^n is periodic in *n* with minimum period lcm(2, e);

(ii) ψ_{Λ}^n is periodic in *n* with minimum period 2*e*.

Suppose now that the Sylow *p*-subgroups of *G* are cyclic. Thus ψ_S^n and ψ_{Λ}^n are both periodic in *n* and we would like to calculate the minimum periods. Let *e* denote the exponent of *G*.

|G| not divisible by p.

 ψ_S^n and ψ_{Λ}^n are periodic in *n* with minimum period *e*.

G a cyclic p-group.

(i) ψⁿ_S is periodic in n with minimum period lcm(2, e);
(ii) ψⁿ_Λ is periodic in n with minimum period 2e.

G has proper cyclic Sylow p-subgroup.

We obtain a lower bound; ψ_S^n and ψ_{Λ}^n are periodic in n with minimum period divisible by lcm(2, e).

Cyclic *p*-groups

Let G be a cyclic p-group of order q > 1. Recall that R_{KG} has \mathbb{Z} -basis $\{V_1, V_2, \ldots, V_q\}$.

What are $\psi_S^n(V_r)$ and $\psi_{\Lambda}^n(V_r)$? We start with the case where $p \nmid n$ and write $\psi^n = \psi_S^n = \psi_{\Lambda}^n$. Let G be a cyclic p-group of order q > 1. Recall that R_{KG} has \mathbb{Z} -basis $\{V_1, V_2, \ldots, V_q\}$.

What are $\psi_S^n(V_r)$ and $\psi_{\Lambda}^n(V_r)$? We start with the case where $p \nmid n$ and write $\psi^n = \psi_S^n = \psi_{\Lambda}^n$.

Theorem 3. Suppose that $p \nmid n$ and let $r \in \{1, ..., q\}$. Write $r = kp^i + s$ where $1 \leq k \leq p-1$ and $1 \leq s \leq p^i$. Then there is a formula (involving only elementary arithmetic) giving $\psi^n(V_r)$ in terms of $\psi^n(V_s)$ and $\psi^n(V_{p^i-s})$.

(Here we take $V_0 = 0$ to cover the case where $p^i - s = 0$.) This theorem gives $\psi^n(V_r)$ recursively on r. Let G be a cyclic p-group of order q > 1. Recall that R_{KG} has \mathbb{Z} -basis $\{V_1, V_2, \ldots, V_q\}$.

What are $\psi_S^n(V_r)$ and $\psi_{\Lambda}^n(V_r)$? We start with the case where $p \nmid n$ and write $\psi^n = \psi_S^n = \psi_{\Lambda}^n$.

Theorem 3. Suppose that $p \nmid n$ and let $r \in \{1, ..., q\}$. Write $r = kp^i + s$ where $1 \leq k \leq p-1$ and $1 \leq s \leq p^i$. Then there is a formula (involving only elementary arithmetic) giving $\psi^n(V_r)$ in terms of $\psi^n(V_s)$ and $\psi^n(V_{p^i-s})$.

(Here we take $V_0 = 0$ to cover the case where $p^i - s = 0$.) This theorem gives $\psi^n(V_r)$ recursively on r.

The proof uses and extends work of Almkvist & Fossum, Kouwenhoven, Hughes & Kemper, and Gow & Laffey.

Patterns for cyclic *p*-groups

When we calculated ψ^n using **Theorem 3** we noticed some interesting patterns, which we were later able to prove.

Example. Let $G = C_{25}$ where p = 5.

$$\begin{split} \psi^{3}(V_{1}) &= V_{1} \\ \psi^{3}(V_{2}) &= V_{4} - V_{2} \\ \psi^{3}(V_{3}) &= V_{5} - V_{3} + V_{1} \\ \psi^{3}(V_{4}) &= V_{4} \\ \psi^{3}(V_{5}) &= V_{5} \\ \psi^{3}(V_{6}) &= V_{16} - V_{14} + V_{4} \\ \psi^{3}(V_{7}) &= V_{19} - V_{17} + V_{13} - V_{11} + V_{5} - V_{3} + V_{1} \\ \psi^{3}(V_{8}) &= V_{20} - V_{18} + V_{16} - V_{14} + V_{12} - V_{10} + V_{4} - V_{2} \\ \psi^{3}(V_{9}) &= V_{19} - V_{11} + V_{1} \\ \psi^{3}(V_{10}) &= V_{20} - V_{10} \\ \psi^{3}(V_{11}) &= V_{21} - V_{11} + V_{1} \\ \psi^{3}(V_{12}) &= V_{24} - V_{22} + V_{20} - V_{14} + V_{12} - V_{10} + V_{4} - V_{2} \\ \psi^{3}(V_{13}) &= V_{25} - V_{23} + V_{21} - V_{15} + V_{13} - V_{11} + V_{5} - V_{3} + V_{1} \end{split}$$

Patterns for cyclic *p*-groups

When we calculated ψ^n using **Theorem 4** we noticed some interesting patterns, which we were later able to prove.

Example. Let $G = C_{25}$ where p = 5.

$$\begin{split} \psi^{3}(V_{1}) &= V_{1} \\ \psi^{3}(V_{2}) &= V_{4} - V_{2} \\ \psi^{3}(V_{3}) &= V_{5} - V_{3} + V_{1} \\ \psi^{3}(V_{4}) &= V_{4} \\ \psi^{3}(V_{5}) &= V_{5} \\ \psi^{3}(V_{6}) &= V_{16} - V_{14} + V_{4} \\ \psi^{3}(V_{7}) &= V_{19} - V_{17} + V_{13} - V_{11} + V_{5} - V_{3} + V_{1} \\ \psi^{3}(V_{8}) &= V_{20} - V_{18} + V_{16} - V_{14} + V_{12} - V_{10} + V_{4} - V_{2} \\ \psi^{3}(V_{9}) &= V_{19} - V_{11} + V_{1} \\ \psi^{3}(V_{10}) &= V_{20} - V_{10} \\ \psi^{3}(V_{11}) &= V_{21} - V_{11} + V_{1} \\ \psi^{3}(V_{12}) &= V_{24} - V_{22} + V_{20} - V_{14} + V_{12} - V_{10} + V_{4} - V_{2} \\ \psi^{3}(V_{13}) &= V_{25} - V_{23} + V_{21} - V_{15} + V_{13} - V_{11} + V_{5} - V_{3} + V_{1} \end{split}$$

Recall that for a KG-module V, $\Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \rightarrow V$ where P(V)is the projective cover of V. Hence

$$\Omega(V_r) = V_{q-r} \text{ for } r = 1, \dots, q$$

with the convention that $V_0 = 0$.

Recall that for a KG-module V, $\Omega(V)$ is defined up to isomorphism as the kernel of any map $P(V) \rightarrow V$ where P(V)is the projective cover of V. Hence

$$\Omega(V_r) = V_{q-r} \text{ for } r = 1, \dots, q$$

with the convention that $V_0 = 0$.

We extend Ω to a \mathbb{Z} -linear map $\Omega : R_{KG} \to R_{KG}$. Also we write Ω^n for the composite of Ω taken *n* times. It is easily seen that

$$\Omega^{n}(V) = \begin{cases} V + aV_{q} & \text{if } n \text{ is even,} \\ \Omega(V) + aV_{q} & \text{if } n \text{ is odd,} \end{cases}$$

where a is some integer.

Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q/p \leq r \leq q$. Then, for all n,

$$\psi_S^n(V_r) = (-1)^{n-1} \Omega^n(\psi_\Lambda^n(V_{q-r})) + (n,q) V_{q/(n,q)} + cV_q$$

where the integer c may be calculated by a dimension count if $\psi^n_{\Lambda}(V_{q-r})$ is known and (n,q) denotes the gcd of n and q.

Peter Symonds (2007) gave a recursive way of finding $S^n(V_r)$ in terms of exterior powers. His result leads to a corresponding result for Adams operations which is somewhat easier to state.

Theorem 4. Suppose that $q/p \leq r \leq q$. Then, for all n,

$$\psi_S^n(V_r) = (-1)^{n-1} \Omega^n(\psi_\Lambda^n(V_{q-r})) + (n,q) V_{q/(n,q)} + cV_q$$

where the integer c may be calculated by a dimension count if $\psi_{\Lambda}^{n}(V_{q-r})$ is known and (n,q) denotes the gcd of n and q.

This is easily seen to give ψ_S^n in terms of ψ_{Λ}^n . (For r < q/p the module V_r may be regarded as a module for a proper factor group of G.)

• The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.

Recap

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- ▶ The Adams operations have many nice properties.

Recap

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- ▶ The Adams operations have many nice properties.
- We have shown that ψⁿ_S and ψⁿ_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic.
 We gave a lower bound for the minimum periods.

Recap

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- ▶ The Adams operations have many nice properties.
- We have shown that ψⁿ_S and ψⁿ_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic.
 We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate ψⁿ_S = ψⁿ_Λ for n not divisible by p. This recursion gives rise to some nice patterns.

- The Adams operations are certain linear maps on the Green ring R_{KG} that encapsulate the behaviour of symmetric and exterior powers.
- ▶ The Adams operations have many nice properties.
- We have shown that ψⁿ_S and ψⁿ_Λ are periodic in n if and only if the Sylow p-subgroups of G are cyclic.
 We gave a lower bound for the minimum periods.
- When G is a cyclic p-group we gave recursive formula to calculate ψⁿ_S = ψⁿ_Λ for n not divisible by p. This recursion gives rise to some nice patterns.
- ► For cyclic *p*-groups we also showed that $\psi_S^n(V_r)$ can be expressed in terms of $\psi_{\Lambda}^n(V_{q-r})$, where V_{q-r} is the Heller translate of V_r .

Cyclic 2-groups

The determination of $\Lambda^n(V_r)$ and $\psi^n_{\Lambda}(V_r)$ for a cyclic *p*-group is still open in general. Frank Himstedt and Peter Symonds have recently discovered a way of evaluating $\Lambda^n(V_r)$ in the case p = 2. This leads to a description of ψ^n_{Λ} as follows.

- ► It can be shown that ψ_{Λ}^n is equal to the identity function for all odd n.
- Also, if $n = k2^d$ where k is odd then $\psi_{\Lambda}^n = \psi_{\Lambda}^k \circ \psi_{\Lambda}^{2^d}$.
- Thus it remains to describe $\psi_{\Lambda}^{2^d}$ for $d \ge 1$.

Theorem 5. Let G be a cyclic 2-group. Write $r = 2^i + s$ where $1 \le s \le 2^i$. Then

$$\psi_{\Lambda}^{2}(V_{r}) = 2V_{2^{i+1}} - 2V_{2^{i+1}-s} + \psi_{\Lambda}^{2}(V_{2^{i}-s})$$

and $\psi_{\Lambda}^{2^{d}}(V_{r}) = 2\psi_{\Lambda}^{2^{d-1}}(V_{s}) + \psi_{\Lambda}^{2^{d}}(V_{2^{i}-s})$ for $d \ge 2$.

 $(\psi_{\Lambda}^2$ can also be obtained from work of Gow and Laffey (2006)).