Tropical matrix algebra

Marianne Johnson¹ & Mark Kambites ²

NBSAN, University of York, 25th November 2009

¹University of Manchester. Supported by CICADA (EPSRC grant EP/E050441/1). ²University of Manchester. Supported by an RCUK Academic Fellowship.

Johnson & Kambites

The tropical semiring

The tropical (or max-plus) semiring has elements

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$$

and binary operations

- $x \oplus y = \max(x, y)$; and
- $x \otimes y = x + y$.

The tropical semiring

The tropical (or max-plus) semiring has elements

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$$

and binary operations

- $x \oplus y = \max(x, y)$; and
- $x \otimes y = x + y$.

Properties

 $\overline{\mathbb{R}}$ is an idempotent semifield:

The tropical semiring

The tropical (or max-plus) semiring has elements

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$$

and binary operations

- $x \oplus y = \max(x, y)$; and
- $x \otimes y = x + y$.

Properties

$\overline{\mathbb{R}}$ is an idempotent semifield:

- (\mathbb{R}, \otimes) is an abelian group with identity 0;
- $-\infty$ is a zero element for \otimes ;
- (\mathbb{R},\oplus) is a commutative monoid with identity $-\infty$;
- \otimes distributes over \oplus ;
- $x \oplus x = x$

Tropical matrix algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Tropical matrix algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in ...

Tropical matrix algebra or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- Enumerative Algebraic Geometry

We (hope to) study the semigroup $M_n(\mathbb{R})$ of all $n \times n$ tropical matrices under multiplication.

We (hope to) study the semigroup $M_n(\overline{\mathbb{R}})$ of all $n \times n$ tropical matrices under multiplication.

Question

What is its abstract algebraic structure?

We (hope to) study the semigroup $M_n(\mathbb{R})$ of all $n \times n$ tropical matrices under multiplication.

Question

What is its abstract algebraic structure?

For example, what are its ...

- Ideals?
- Idempotents?
- Subgroups?

Example

Example

Example

Example

Projective tropical 1-space

Thus we identify projective tropical 1-space with the two-point compactification of the real line $\hat{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ via the map

Projective tropical 1-space

Thus we identify projective tropical 1-space with the two-point compactification of the real line $\hat{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ via the map

Question

How does the algebraic structure of $M_n(\mathbb{R})$ relate to the geometric structure of affine tropical n-space and projective tropical (n-1)-space?

Johnson & Kambites

Tropical matrix algebra

Column and row spaces

- For $A \in M_n(\overline{\mathbb{R}})$ we write
 - C(A) for the column span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^n$);
 - R(A) for the row span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^n$).

Column and row spaces

For $A \in M_n(\overline{\mathbb{R}})$ we write

- C(A) for the column span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^n$);
- R(A) for the row span of A (a tropical 'subspace' in \mathbb{R}^n).

Example

Let
$$A = \left(egin{array}{c} a & -\infty \\ b & c \end{array}
ight) \in M_2(\overline{\mathbb{R}})$$
, where $a,b,c\in\mathbb{R}$.

Column and row spaces

For $A \in M_n(\overline{\mathbb{R}})$ we write

- C(A) for the column span of A (a tropical 'subspace' in \mathbb{R}^n);
- R(A) for the row span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^n$).

Example

Let
$$A = \begin{pmatrix} a & -\infty \\ b & c \end{pmatrix} \in M_2(\overline{\mathbb{R}})$$
, where $a, b, c \in \mathbb{R}$.
Then $C(A) = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x + b - a \le y \right\} \subseteq \overline{\mathbb{R}}^2$.

Projective column and row spaces

For $A \in M_n(\overline{\mathbb{R}})$ we write

- PC(A) for the image of C(A) in projective space (a convex set);
- PR(A) for the image of R(A) in projective space (a convex set).

Projective column and row spaces

For $A \in M_n(\overline{\mathbb{R}})$ we write

- PC(A) for the image of C(A) in projective space (a convex set);
- PR(A) for the image of R(A) in projective space (a convex set).

Example

In the case n = 2, convex sets in $\hat{\mathbb{R}}$ are just intervals. Consider $A = \begin{pmatrix} a & -\infty \\ b & c \end{pmatrix} \in M_2(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

Projective column and row spaces

For $A \in M_n(\overline{\mathbb{R}})$ we write

- PC(A) for the image of C(A) in projective space (a convex set);
- PR(A) for the image of R(A) in projective space (a convex set).

Example

In the case
$$n = 2$$
, convex sets in $\hat{\mathbb{R}}$ are just intervals.
Consider $A = \begin{pmatrix} a & -\infty \\ b & c \end{pmatrix} \in M_2(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \iff xM \subseteq yM$.

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \iff xM \subseteq yM$. From this we obtain an equivalence relation

$$x\mathcal{R}y \iff xM = yM \iff x \leq_{\mathcal{R}} y \text{ and } y \leq_{\mathcal{R}} x$$

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \iff xM \subseteq yM$. From this we obtain an equivalence relation

$$x\mathcal{R}y \iff xM = yM \iff x \leq_{\mathcal{R}} y \text{ and } y \leq_{\mathcal{R}} x$$

Similarly ...

- $x \leq_{\mathcal{L}} y \iff Mx \subseteq My$, $x\mathcal{L}y \iff Mx = My$
- $x \leq_{\mathcal{J}} y \iff M x M \subseteq M y M$, $x \mathcal{J} y \iff M x M = M y M$;

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \iff xM \subseteq yM$. From this we obtain an equivalence relation

$$x\mathcal{R}y \iff xM = yM \iff x \leq_{\mathcal{R}} y \text{ and } y \leq_{\mathcal{R}} x$$

Similarly ...

- $x \leq_{\mathcal{L}} y \iff Mx \subseteq My$, $x\mathcal{L}y \iff Mx = My$
- $x \leq_{\mathcal{J}} y \iff M x M \subseteq M y M$, $x \mathcal{J} y \iff M x M = M y M$;

We also define equivalence relations ...

- $xHy \iff xRy$ and xLy;
- $x\mathcal{D}y \iff x\mathcal{R}z$ and $z\mathcal{L}y$ for some $z \in M$;

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \iff xM \subseteq yM$. From this we obtain an equivalence relation

$$x\mathcal{R}y \iff xM = yM \iff x \leq_{\mathcal{R}} y \text{ and } y \leq_{\mathcal{R}} x$$

Similarly ...

- $x \leq_{\mathcal{L}} y \iff Mx \subseteq My$, $x\mathcal{L}y \iff Mx = My$
- $x \leq_{\mathcal{J}} y \iff M x M \subseteq M y M$, $x \mathcal{J} y \iff M x M = M y M$;

We also define equivalence relations ...

- $xHy \iff xRy$ and xLy;
- $x\mathcal{D}y \iff x\mathcal{R}z$ and $z\mathcal{L}y$ for some $z \in M$;

Note

These relations encapsulate the (left, right and two-sided) ideal structure of M and are fundamental to its structure.

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) $A \leq_{\mathcal{R}} B$;
- (ii) $C(A) \subseteq C(B)$;
- (iii) $PC(A) \subseteq PC(B)$.

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) $A \leq_{\mathcal{R}} B$;
- (ii) $C(A) \subseteq C(B)$;
- (iii) $PC(A) \subseteq PC(B)$.

Corollary

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

(i) ARB;

(ii)
$$C(A) = C(B);$$

(iii)
$$PC(A) = PC(B)$$
.

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) $A \leq_{\mathcal{R}} B$;
- (ii) $C(A) \subseteq C(B)$;
- (iii) $PC(A) \subseteq PC(B)$.

Corollary

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) ARB;
- (ii) C(A) = C(B);
- (iii) PC(A) = PC(B).

So \mathcal{R} -classes in $M_n(\overline{\mathbb{R}})$ are in 1-1 correspondence with *n*-generated convex sets in projective tropical (n-1)-space.

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) $A \leq_{\mathcal{L}} B$;
- (ii) $R(A) \subseteq R(B)$;
- (iii) $PR(A) \subseteq PR(B)$.

Corollary

Let $A, B \in M_n(\overline{\mathbb{R}})$. Then the following are equivalent:

- (i) *ALB*;
- (ii) R(A) = R(B);
- (iii) PR(A) = PR(B).

So \mathcal{L} -classes in $M_n(\mathbb{R})$ are in 1-1 correspondence with *n*-generated convex sets in projective tropical (n-1)-space.

Corollary

Let $A, B \in M_2(\mathbb{R})$. Then the following are equivalent: (i) $A\mathcal{R}B$; (ii) C(A) = C(B); (iii) PC(A) = PC(B).

Corollary

Let $A, B \in M_2(\mathbb{R})$. Then the following are equivalent: (i) $A\mathcal{R}B$; (ii) C(A) = C(B); (iii) PC(A) = PC(B).

Corollary

The lattice of principal right ideals in $M_2(\mathbb{R})$ is isomorphic to the intersection lattice generated by closed subintervals of the closed unit interval.

Isometries in projective tropical 1-space

We can define a "metric" on $\hat{\mathbb{R}}=\mathbb{R}\cup\{-\infty,\infty\}$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ \infty & \text{if } x = -\infty \neq y \text{ or } x = \infty \neq y \\ |y - x| & \text{otherwise.} \end{cases}$$

This gives a natural notion of **isometry** (denoted by \cong).

We can define a "metric" on $\hat{\mathbb{R}}=\mathbb{R}\cup\{-\infty,\infty\}$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ \infty & \text{if } x = -\infty \neq y \text{ or } x = \infty \neq y \\ |y - x| & \text{otherwise.} \end{cases}$$

This gives a natural notion of **isometry** (denoted by \cong).

Proposition

Let
$$A \in M_2(\overline{\mathbb{R}})$$
. Then $PC(A) \cong PR(A)$.

Green's \mathcal{J} relation in $M_2(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_2(\overline{\mathbb{R}})$. Then $A \leq_{\mathcal{J}} B$ if and only if PC(A) embeds isometrically in PC(B).

Green's \mathcal{J} relation in $M_2(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_2(\mathbb{R})$. Then $A \leq_{\mathcal{J}} B$ if and only if PC(A) embeds isometrically in PC(B).

Theorem

Let $A, B \in M_2(\overline{\mathbb{R}})$. Then the following are equivalent

- (i) $A\mathcal{J}B$;
- (ii) ADB;
- (iii) $PC(A) \cong PC(B)$
- (iv) $PR(A) \cong PR(B)$

Green's \mathcal{J} relation in $M_2(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_2(\mathbb{R})$. Then $A \leq_{\mathcal{J}} B$ if and only if PC(A) embeds isometrically in PC(B).

Theorem

Let $A, B \in M_2(\overline{\mathbb{R}})$. Then the following are equivalent

- (i) $A\mathcal{J}B$;
- (ii) ADB;

```
(iii) PC(A) \cong PC(B)
```

(iv) $PR(A) \cong PR(B)$

Corollary

The lattice of principal two-sided ideals in $M_2(\mathbb{R})$ is isomorphic to the lattice of isometry types of closed convex subsets of $\hat{\mathbb{R}}$.

Johnson & Kambites

Idempotents and regularity

The idempotents in $M_2(\overline{\mathbb{R}})$ are

$$\left(\begin{array}{cc} 0 & x \\ y & x+y \end{array}\right), \ \left(\begin{array}{cc} 0 & x \\ y & 0 \end{array}\right), \ \left(\begin{array}{cc} x+y & x \\ y & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} -\infty & -\infty \\ -\infty & -\infty \end{array}\right)$$

where $x, y \in \overline{\mathbb{R}}$ with $x + y \leq 0$.

Idempotents and regularity

The idempotents in $M_2(\overline{\mathbb{R}})$ are

$$\left(\begin{array}{cc} 0 & x \\ y & x+y \end{array}\right), \ \left(\begin{array}{cc} 0 & x \\ y & 0 \end{array}\right), \ \left(\begin{array}{cc} x+y & x \\ y & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} -\infty & -\infty \\ -\infty & -\infty \end{array}\right)$$

where $x, y \in \overline{\mathbb{R}}$ with $x + y \leq 0$.

Fact

For every 2-generated convex subset X of $\hat{\mathbb{R}}$, there is an idempotent $E \in M_2(\overline{\mathbb{R}})$ with PC(E) = X. Thus $M_2(\overline{\mathbb{R}})$ is regular.

Idempotents and regularity

The idempotents in $M_2(\overline{\mathbb{R}})$ are

$$\left(\begin{array}{cc} 0 & x \\ y & x+y \end{array}\right), \ \left(\begin{array}{cc} 0 & x \\ y & 0 \end{array}\right), \ \left(\begin{array}{cc} x+y & x \\ y & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} -\infty & -\infty \\ -\infty & -\infty \end{array}\right)$$

where $x, y \in \overline{\mathbb{R}}$ with $x + y \leq 0$.

Fact

For every 2-generated convex subset X of $\hat{\mathbb{R}}$, there is an idempotent $E \in M_2(\overline{\mathbb{R}})$ with PC(E) = X. Thus $M_2(\overline{\mathbb{R}})$ is regular.

Example

Consider
$$X = [b - a, \infty] \subseteq \hat{\mathbb{R}}$$
.
Then we can choose
 $E = \begin{pmatrix} 0 & -\infty \\ b - a & 0 \end{pmatrix} \in M_2(\overline{\mathbb{R}})$
such that $PC(E) = X$

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H} -classes of idempotents and that any two maximal subgroups in the same \mathcal{D} -class are isomorphic.

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H} -classes of idempotents and that any two maximal subgroups in the same \mathcal{D} -class are isomorphic.

Theorem

Let $M \subseteq \hat{\mathbb{R}}$ be a closed convex subset. The maximal subgroups in the \mathcal{D} -class corresponding to M are isomorphic to:

- $\{1\}$ if $M = \emptyset$;
- \mathbb{R} if M is a point or an interval with one real endpoint;
- $\mathbb{R} \times S_2$ if *M* is an interval with 2 real endpoints;
- $\mathbb{R} \wr S_2$ if $M = \hat{\mathbb{R}}$.

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H} -classes of idempotents and that any two maximal subgroups in the same \mathcal{D} -class are isomorphic.

Theorem

Let $M \subseteq \hat{\mathbb{R}}$ be a closed convex subset. The maximal subgroups in the \mathcal{D} -class corresponding to M are isomorphic to:

- $\{1\}$ if $M = \emptyset$;
- \mathbb{R} if M is a point or an interval with one real endpoint;
- $\mathbb{R} \times S_2$ if *M* is an interval with 2 real endpoints;
- $\mathbb{R} \wr S_2$ if $M = \hat{\mathbb{R}}$.

Corollary

Every group of 2×2 tropical matrices is torsion-free abelian, or has a torsion-free abelian subgroup of index 2.