
${ }^{1}$ University of Manchester. Supported by CICADA (EPSRC grant EP/E050441/1).
${ }^{2}$ University of Manchester. Supported by an RCUK Academic Fellowship.

The tropical semiring

The tropical (or max-plus) semiring has elements

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}
$$

and binary operations

- $x \oplus y=\max (x, y)$; and
- $x \otimes y=x+y$.

The tropical semiring

The tropical (or max-plus) semiring has elements

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}
$$

and binary operations

- $x \oplus y=\max (x, y)$; and
- $x \otimes y=x+y$.

Properties

$\overline{\mathbb{R}}$ is an idempotent semifield:

The tropical semiring

The tropical (or max-plus) semiring has elements

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}
$$

and binary operations

- $x \oplus y=\max (x, y)$; and
- $x \otimes y=x+y$.

Properties

$\overline{\mathbb{R}}$ is an idempotent semifield:

- (\mathbb{R}, \otimes) is an abelian group with identity 0 ;
- $-\infty$ is a zero element for \otimes;
- (\mathbb{R}, \oplus) is a commutative monoid with identity $-\infty$;
- \otimes distributes over \oplus;
- $x \oplus x=x$

The tropical semiring

Tropical matrix algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

The tropical semiring

Tropical matrix algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in ...

The tropical semiring

Tropical matrix algebra or max-plus algebra is linear algebra where the base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- Enumerative Algebraic Geometry

Tropical matrices

We (hope to) study the semigroup $M_{n}(\overline{\mathbb{R}})$ of all $n \times n$ tropical matrices under multiplication.

Tropical matrices

We (hope to) study the semigroup $M_{n}(\overline{\mathbb{R}})$ of all $n \times n$ tropical matrices under multiplication.

Question

What is its abstract algebraic structure?

Tropical matrices

We (hope to) study the semigroup $M_{n}(\overline{\mathbb{R}})$ of all $n \times n$ tropical matrices under multiplication.

Question

What is its abstract algebraic structure?
For example, what are its ...

- Ideals?
- Idempotents?
- Subgroups?

Affine tropical n-space

$M_{n}(\overline{\mathbb{R}})$ comes equipped with a natural action on the space $\overline{\mathbb{R}}^{n}$ of tropical n-vectors (affine tropical n-space).

Affine tropical n-space

$M_{n}(\overline{\mathbb{R}})$ comes equipped with a natural action on the space $\overline{\mathbb{R}}^{n}$ of tropical n-vectors (affine tropical n-space).

Example

We may think of elements of tropical 2-space pictorially as follows...

Affine tropical n-space

$M_{n}(\overline{\mathbb{R}})$ comes equipped with a natural action on the space $\overline{\mathbb{R}}^{n}$ of tropical n-vectors (affine tropical n-space).

Example

We may think of elements of tropical 2-space pictorially as follows...

Affine tropical n-space

$M_{n}(\overline{\mathbb{R}})$ comes equipped with a natural action on the space $\overline{\mathbb{R}}^{n}$ of tropical n-vectors (affine tropical n-space).

Example

We may think of elements of tropical 2-space pictorially as follows...

Affine tropical n-space

$M_{n}(\overline{\mathbb{R}})$ comes equipped with a natural action on the space $\overline{\mathbb{R}}^{n}$ of tropical n-vectors (affine tropical n-space).

Example

We may think of elements of tropical 2-space pictorially as follows...

Projective tropical ($n-1$)-space

From $\overline{\mathbb{R}}^{n}$ we obtain projective tropical ($n-1$)-space by discarding the "zero vector" and identifying two vectors which are "tropical scalings" of each other.

Projective tropical ($n-1$)-space

From $\overline{\mathbb{R}}^{n}$ we obtain projective tropical ($n-1$)-space by discarding the "zero vector" and identifying two vectors which are "tropical scalings" of each other.

Example

Projective tropical ($n-1$)-space

From $\overline{\mathbb{R}}^{n}$ we obtain projective tropical ($n-1$)-space by discarding the "zero vector" and identifying two vectors which are "tropical scalings" of each other.

Example

Projective tropical ($n-1$)-space

From $\overline{\mathbb{R}}^{n}$ we obtain projective tropical ($n-1$)-space by discarding the "zero vector" and identifying two vectors which are "tropical scalings" of each other.

Example

Projective tropical 1-space

Thus we identify projective tropical 1-space with the two-point compactification of the real line $\hat{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ via the map

$$
[x, y] \mapsto y-x
$$

Projective tropical 1-space

Thus we identify projective tropical 1 -space with the two-point compactification of the real line $\hat{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ via the map

$$
[x, y] \mapsto y-x
$$

Question

How does the algebraic structure of $M_{n}(\overline{\mathbb{R}})$ relate to the geometric structure of affine tropical n-space and projective tropical ($n-1$)-space?

Column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $C(A)$ for the column span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$);
- $R(A)$ for the row span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$).

Column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $C(A)$ for the column span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$);
- $R(A)$ for the row span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$).

Example

Let $A=\left(\begin{array}{cc}a & -\infty \\ b & c\end{array}\right) \in M_{2}(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

Column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $C(A)$ for the column span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$);
- $R(A)$ for the row span of A (a tropical 'subspace' in $\overline{\mathbb{R}}^{n}$).

Example

Let $A=\left(\begin{array}{cc}a & -\infty \\ b & c\end{array}\right) \in M_{2}(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

$$
\text { Then } C(A)=\left\{\binom{x}{y}: x+b-a \leq y\right\} \subseteq \overline{\mathbb{R}}^{2}
$$

Projective column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $P C(A)$ for the image of $C(A)$ in projective space (a convex set);
- $P R(A)$ for the image of $R(A)$ in projective space (a convex set).

Projective column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $P C(A)$ for the image of $C(A)$ in projective space (a convex set);
- $P R(A)$ for the image of $R(A)$ in projective space (a convex set).

Example

In the case $n=2$, convex sets in $\hat{\mathbb{R}}$ are just intervals.
Consider $A=\left(\begin{array}{cc}a & -\infty \\ b & c\end{array}\right) \in M_{2}(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

Projective column and row spaces

For $A \in M_{n}(\overline{\mathbb{R}})$ we write

- $P C(A)$ for the image of $C(A)$ in projective space (a convex set);
- $P R(A)$ for the image of $R(A)$ in projective space (a convex set).

Example

In the case $n=2$, convex sets in $\hat{\mathbb{R}}$ are just intervals.
Consider $A=\left(\begin{array}{cc}a & -\infty \\ b & c\end{array}\right) \in M_{2}(\overline{\mathbb{R}})$, where $a, b, c \in \mathbb{R}$.

Then $P C(A)=[b-a, \infty] \subseteq \hat{\mathbb{R}}$.

Ideals and Green's relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \Longleftrightarrow x M \subseteq y M$.

Ideals and Green's relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \Longleftrightarrow x M \subseteq y M$. From this we obtain an equivalence relation

$$
x \mathcal{R} y \Longleftrightarrow x M=y M \Longleftrightarrow x \leq_{\mathcal{R}} y \text { and } y \leq_{\mathcal{R}} x
$$

Ideals and Green's relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \Longleftrightarrow x M \subseteq y M$. From this we obtain an equivalence relation

$$
x \mathcal{R} y \Longleftrightarrow x M=y M \Longleftrightarrow x \leq_{\mathcal{R}} y \text { and } y \leq_{\mathcal{R}} x
$$

Similarly...

- $x \leq_{\mathcal{L}} y \Longleftrightarrow M x \subseteq M y, \quad x \mathcal{L} y \Longleftrightarrow M x=M y$
- $x \leq \mathcal{J} y \Longleftrightarrow M x M \subseteq M y M, \quad x \mathcal{J} y \Longleftrightarrow M x M=M y M ;$

Ideals and Green's relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \Longleftrightarrow x M \subseteq y M$. From this we obtain an equivalence relation

$$
x \mathcal{R} y \Longleftrightarrow x M=y M \Longleftrightarrow x \leq_{\mathcal{R}} y \text { and } y \leq_{\mathcal{R}} x
$$

Similarly...

- $x \leq_{\mathcal{L}} y \Longleftrightarrow M x \subseteq M y, \quad x \mathcal{L} y \Longleftrightarrow M x=M y$
- $x \leq_{\mathcal{J}} y \Longleftrightarrow M x M \subseteq M y M, \quad x \mathcal{J} y \Longleftrightarrow M x M=M y M$;

We also define equivalence relations...

- $x \mathcal{H} y \Longleftrightarrow x \mathcal{R} y$ and $x \mathcal{L} y$;
- $x \mathcal{D} y \Longleftrightarrow x \mathcal{R} z$ and $z \mathcal{L} y$ for some $z \in M$;

Ideals and Green's relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by $x \leq_{\mathcal{R}} y \Longleftrightarrow x M \subseteq y M$. From this we obtain an equivalence relation

$$
x \mathcal{R} y \Longleftrightarrow x M=y M \Longleftrightarrow x \leq_{\mathcal{R}} y \text { and } y \leq_{\mathcal{R}} x
$$

Similarly...

- $x \leq_{\mathcal{L}} y \Longleftrightarrow M x \subseteq M y, \quad x \mathcal{L} y \Longleftrightarrow M x=M y$
- $x \leq_{\mathcal{J}} y \Longleftrightarrow M x M \subseteq M y M, \quad x \mathcal{J} y \Longleftrightarrow M x M=M y M$;

We also define equivalence relations...

- $x \mathcal{H} y \Longleftrightarrow x \mathcal{R} y$ and $x \mathcal{L} y$;
- $x \mathcal{D} y \Longleftrightarrow x \mathcal{R} z$ and $z \mathcal{L} y$ for some $z \in M$;

Note

These relations encapsulate the (left, right and two-sided) ideal structure of M and are fundamental to its structure.

Green's \mathcal{R} relation in $M_{n}(\overline{\mathbb{R}})$.

Lemma

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \leq_{\mathcal{R}} B$;
(ii) $C(A) \subseteq C(B)$;
(iii) $P C(A) \subseteq P C(B)$.

Green's \mathcal{R} relation in $M_{n}(\overline{\mathbb{R}})$.

Lemma

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \leq_{\mathcal{R}} B$;
(ii) $C(A) \subseteq C(B)$;
(iii) $P C(A) \subseteq P C(B)$.

Corollary

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \mathcal{R} B$;
(ii) $C(A)=C(B)$;
(iii) $P C(A)=P C(B)$.

Green's \mathcal{R} relation in $M_{n}(\overline{\mathbb{R}})$.

Lemma

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \leq_{\mathcal{R}} B$;
(ii) $C(A) \subseteq C(B)$;
(iii) $P C(A) \subseteq P C(B)$.

Corollary

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \mathcal{R} B$;
(ii) $C(A)=C(B)$;
(iii) $P C(A)=P C(B)$.

So \mathcal{R}-classes in $M_{n}(\overline{\mathbb{R}})$ are in 1-1 correspondence with n-generated convex sets in projective tropical ($n-1$)-space.

Green's \mathcal{L} relation in $M_{n}(\overline{\mathbb{R}})$.

Lemma

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \leq{ }_{\mathcal{L}} B$;
(ii) $R(A) \subseteq R(B)$;
(iii) $P R(A) \subseteq P R(B)$.

Corollary

Let $A, B \in M_{n}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \mathcal{L} B$;
(ii) $R(A)=R(B)$;
(iii) $\operatorname{PR}(A)=P R(B)$.

So \mathcal{L}-classes in $M_{n}(\overline{\mathbb{R}})$ are in 1-1 correspondence with n-generated convex sets in projective tropical ($n-1$)-space.

Green's \mathcal{R} relation in $M_{2}(\overline{\mathbb{R}})$.

Corollary

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \mathcal{R} B$;
(ii) $C(A)=C(B)$;
(iii) $P C(A)=P C(B)$.

Green's \mathcal{R} relation in $M_{2}(\overline{\mathbb{R}})$.

Corollary

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then the following are equivalent:
(i) $A \mathcal{R} B$;
(ii) $C(A)=C(B)$;
(iii) $P C(A)=P C(B)$.

Corollary

The lattice of principal right ideals in $M_{2}(\overline{\mathbb{R}})$ is isomorphic to the intersection lattice generated by closed subintervals of the closed unit interval.

Isometries in projective tropical 1-space

We can define a "metric" on $\hat{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ \infty & \text { if } x=-\infty \neq y \text { or } x=\infty \neq y \\ |y-x| & \text { otherwise }\end{cases}
$$

This gives a natural notion of isometry (denoted by \cong).

Isometries in projective tropical 1-space

We can define a "metric" on $\hat{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ \infty & \text { if } x=-\infty \neq y \text { or } x=\infty \neq y \\ |y-x| & \text { otherwise }\end{cases}
$$

This gives a natural notion of isometry (denoted by \cong).

Proposition

Let $A \in M_{2}(\overline{\mathbb{R}})$. Then $P C(A) \cong P R(A)$.

Green's \mathcal{J} relation in $M_{2}(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then $A \leq_{\mathcal{J}} B$ if and only if $P C(A)$ embeds isometrically in $P C(B)$.

Green's \mathcal{J} relation in $M_{2}(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then $A \leq_{\mathcal{J}} B$ if and only if $P C(A)$ embeds isometrically in $P C(B)$.

Theorem

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then the following are equivalent
(i) $A \mathcal{J} B$;
(ii) $A \mathcal{D} B$;
(iii) $P C(A) \cong P C(B)$
(iv) $P R(A) \cong P R(B)$

Green's \mathcal{J} relation in $M_{2}(\overline{\mathbb{R}})$

Proposition

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then $A \leq_{\mathcal{J}} B$ if and only if $P C(A)$ embeds isometrically in $P C(B)$.

Theorem

Let $A, B \in M_{2}(\overline{\mathbb{R}})$. Then the following are equivalent
(i) $A \mathcal{J} B$;
(ii) $A \mathcal{D} B$;
(iii) $P C(A) \cong P C(B)$
(iv) $P R(A) \cong P R(B)$

Corollary

The lattice of principal two-sided ideals in $M_{2}(\overline{\mathbb{R}})$ is isomorphic to the lattice of isometry types of closed convex subsets of $\hat{\mathbb{R}}$.

Idempotents and regularity

The idempotents in $M_{2}(\overline{\mathbb{R}})$ are

$$
\left(\begin{array}{cc}
0 & x \\
y & x+y
\end{array}\right),\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right),\left(\begin{array}{cc}
x+y & x \\
y & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\infty & -\infty \\
-\infty & -\infty
\end{array}\right)
$$

where $x, y \in \overline{\mathbb{R}}$ with $x+y \leq 0$.

Idempotents and regularity

The idempotents in $M_{2}(\overline{\mathbb{R}})$ are

$$
\left(\begin{array}{cc}
0 & x \\
y & x+y
\end{array}\right),\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right),\left(\begin{array}{cc}
x+y & x \\
y & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\infty & -\infty \\
-\infty & -\infty
\end{array}\right)
$$

where $x, y \in \overline{\mathbb{R}}$ with $x+y \leq 0$.

Fact

For every 2-generated convex subset X of $\hat{\mathbb{R}}$, there is an idempotent $E \in M_{2}(\overline{\mathbb{R}})$ with $P C(E)=X$. Thus $M_{2}(\overline{\mathbb{R}})$ is regular.

Idempotents and regularity

The idempotents in $M_{2}(\overline{\mathbb{R}})$ are

$$
\left(\begin{array}{cc}
0 & x \\
y & x+y
\end{array}\right),\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right),\left(\begin{array}{cc}
x+y & x \\
y & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
-\infty & -\infty \\
-\infty & -\infty
\end{array}\right)
$$

where $x, y \in \overline{\mathbb{R}}$ with $x+y \leq 0$.

Fact

For every 2-generated convex subset X of $\hat{\mathbb{R}}$, there is an idempotent $E \in M_{2}(\overline{\mathbb{R}})$ with $P C(E)=X$. Thus $M_{2}(\overline{\mathbb{R}})$ is regular.

Example

Consider $X=[b-a, \infty] \subseteq \hat{\mathbb{R}}$.
Then we can choose
$E=\left(\begin{array}{cc}0 & -\infty \\ b-a & 0\end{array}\right) \in M_{2}(\overline{\mathbb{R}})$
such that $P C(E)=X$

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H}-classes of idempotents and that any two maximal subgroups in the same \mathcal{D}-class are isomorphic.

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H}-classes of idempotents and that any two maximal subgroups in the same \mathcal{D}-class are isomorphic.

Theorem

Let $M \subseteq \hat{\mathbb{R}}$ be a closed convex subset. The maximal subgroups in the \mathcal{D}-class corresponding to M are isomorphic to:

- $\{1\}$ if $M=\emptyset$;
- \mathbb{R} if M is a point or an interval with one real endpoint;
- $\mathbb{R} \times S_{2}$ if M is an interval with 2 real endpoints;
- \mathbb{R} 〕 S_{2} if $M=\hat{\mathbb{R}}$.

Groups of 2×2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S are exactly the \mathcal{H}-classes of idempotents and that any two maximal subgroups in the same \mathcal{D}-class are isomorphic.

Theorem

Let $M \subseteq \hat{\mathbb{R}}$ be a closed convex subset. The maximal subgroups in the \mathcal{D}-class corresponding to M are isomorphic to:

- $\{1\}$ if $M=\emptyset$;
- \mathbb{R} if M is a point or an interval with one real endpoint;
- $\mathbb{R} \times S_{2}$ if M is an interval with 2 real endpoints;
- \mathbb{R} 〕 S_{2} if $M=\hat{\mathbb{R}}$.

Corollary

Every group of 2×2 tropical matrices is torsion-free abelian, or has a torsion-free abelian subgroup of index 2 .

