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The tropical semiring

The tropical (or max-plus) semiring has elements

R = R ∪ {−∞}

and binary operations

x ⊕ y = max(x , y); and

x ⊗ y = x + y .

Properties

R is an idempotent semifield:

(R,⊗) is an abelian group with identity 0;

−∞ is a zero element for ⊗;

(R,⊕) is a commutative monoid with identity −∞;

⊗ distributes over ⊕;

x ⊕ x = x
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The tropical semiring

Tropical matrix algebra or max-plus algebra is linear algebra where the
base field is replaced by the tropical semiring.

Applications

Tropical methods have applications in . . .

Combinatorial Optimisation

Discrete Event Systems

Control Theory

Formal Languages and Automata

Phylogenetics

Statistical Inference

Geometric Group Theory

Enumerative Algebraic Geometry
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Tropical matrices

We (hope to) study the semigroup Mn(R) of all n × n tropical matrices
under multiplication.

Question

What is its abstract algebraic structure?

For example, what are its . . .

Ideals?

Idempotents?

Subgroups?
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Affine tropical n-space

Mn(R) comes equipped with a natural action on the space Rn
of tropical

n-vectors (affine tropical n-space).

Example

We may think of elements of tropical 2-space pictorially as follows...

(a,b)

(c,d)

(-    ,b)∞

(c,-    )∞(-    ,-    )∞ ∞
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Projective tropical (n − 1)-space

From Rn
we obtain projective tropical (n − 1)-space by discarding the

“zero vector” and identifying two vectors which are “tropical scalings” of
each other.

Example

(c,d) 

(-    ,-    )∞ ∞

k x (c,d)

(a,b) 

m x (a,b)

(e,-    )∞

(-    ,f)∞
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Projective tropical 1-space

Thus we identify projective tropical 1-space with the two-point
compactification of the real line R̂ = R ∪ {−∞,∞} via the map

[x , y ] 7→ y − x .

[c,d]

[a,b] 

[e,-    ]∞

[-    ,f ]∞
∞

b-a

d-c

∞-

Question

How does the algebraic structure of Mn(R) relate to the geometric
structure of affine tropical n-space and projective tropical (n − 1)-space?
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Column and row spaces

For A ∈ Mn(R) we write

C (A) for the column span of A (a tropical ‘subspace’ in Rn
);

R(A) for the row span of A (a tropical ‘subspace’ in Rn
).

Example

Let A =

(
a −∞
b c

)
∈ M2(R), where a, b, c ∈ R.

Then C (A) =

{(
x
y

)
: x + b − a ≤ y

}
⊆ R2

.

b-a
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Projective column and row spaces

For A ∈ Mn(R) we write

PC (A) for the image of C (A) in projective space (a convex set);

PR(A) for the image of R(A) in projective space (a convex set).

Example

In the case n = 2, convex sets in R̂ are just intervals.

Consider A =

(
a −∞
b c

)
∈ M2(R), where a, b, c ∈ R.

b-a

Then PC (A) = [b − a,∞] ⊆ R̂.
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Ideals and Green’s relations

We define a pre-order ≤R on a monoid M by x≤Ry ⇐⇒ xM ⊆ yM.

From this we obtain an equivalence relation

xRy ⇐⇒ xM = yM ⇐⇒ x≤Ry and y≤Rx

Similarly . . .

x≤Ly ⇐⇒ Mx ⊆ My , xLy ⇐⇒ Mx = My

x≤J y ⇐⇒ MxM ⊆ MyM, xJ y ⇐⇒ MxM = MyM;

We also define equivalence relations . . .

xHy ⇐⇒ xRy and xLy ;

xDy ⇐⇒ xRz and zLy for some z ∈ M;

Note

These relations encapsulate the (left, right and two-sided) ideal structure
of M and are fundamental to its structure.
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Green’s R relation in Mn(R).

Lemma

Let A,B ∈ Mn(R). Then the following are equivalent:

(i) A≤RB;

(ii) C (A) ⊆ C (B);

(iii) PC (A) ⊆ PC (B).

Corollary

Let A,B ∈ Mn(R). Then the following are equivalent:

(i) ARB;

(ii) C (A) = C (B);

(iii) PC (A) = PC (B).

So R-classes in Mn(R) are in 1-1 correspondence with n-generated convex
sets in projective tropical (n − 1)-space.
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Green’s L relation in Mn(R).

Lemma

Let A,B ∈ Mn(R). Then the following are equivalent:

(i) A≤LB;

(ii) R(A) ⊆ R(B);

(iii) PR(A) ⊆ PR(B).

Corollary

Let A,B ∈ Mn(R). Then the following are equivalent:

(i) ALB;

(ii) R(A) = R(B);

(iii) PR(A) = PR(B).

So L-classes in Mn(R) are in 1-1 correspondence with n-generated convex
sets in projective tropical (n − 1)-space.
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Green’s R relation in M2(R).

Corollary

Let A,B ∈ M2(R). Then the following are equivalent:

(i) ARB;

(ii) C (A) = C (B);

(iii) PC (A) = PC (B).

Corollary

The lattice of principal right ideals in M2(R) is isomorphic to the
intersection lattice generated by closed subintervals of the closed unit
interval.
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Isometries in projective tropical 1-space

We can define a “metric” on R̂ = R ∪ {−∞,∞} by

d(x , y) =


0 if x = y

∞ if x = −∞ 6= y or x = ∞ 6= y

|y − x | otherwise.

This gives a natural notion of isometry (denoted by ∼=).

Proposition

Let A ∈ M2(R). Then PC (A) ∼= PR(A).
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Green’s J relation in M2(R)

Proposition

Let A,B ∈ M2(R). Then A≤JB if and only if PC (A) embeds
isometrically in PC (B).

Theorem

Let A,B ∈ M2(R). Then the following are equivalent

(i) AJB;

(ii) ADB;

(iii) PC (A) ∼= PC (B)

(iv) PR(A) ∼= PR(B)

Corollary

The lattice of principal two-sided ideals in M2(R) is isomorphic to the
lattice of isometry types of closed convex subsets of R̂.
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Green’s J relation in M2(R)

Proposition

Let A,B ∈ M2(R). Then A≤JB if and only if PC (A) embeds
isometrically in PC (B).

Theorem

Let A,B ∈ M2(R). Then the following are equivalent

(i) AJB;

(ii) ADB;

(iii) PC (A) ∼= PC (B)

(iv) PR(A) ∼= PR(B)

Corollary

The lattice of principal two-sided ideals in M2(R) is isomorphic to the
lattice of isometry types of closed convex subsets of R̂.

Johnson & Kambites Tropical matrix algebra 15 / 17



Green’s J relation in M2(R)

Proposition

Let A,B ∈ M2(R). Then A≤JB if and only if PC (A) embeds
isometrically in PC (B).

Theorem

Let A,B ∈ M2(R). Then the following are equivalent

(i) AJB;

(ii) ADB;

(iii) PC (A) ∼= PC (B)

(iv) PR(A) ∼= PR(B)

Corollary

The lattice of principal two-sided ideals in M2(R) is isomorphic to the
lattice of isometry types of closed convex subsets of R̂.

Johnson & Kambites Tropical matrix algebra 15 / 17



Idempotents and regularity

The idempotents in M2(R) are(
0 x
y x + y

)
,

(
0 x
y 0

)
,

(
x + y x

y 0

)
and

(
−∞ −∞
−∞ −∞

)
where x , y ∈ R̄ with x + y ≤ 0.

Fact

For every 2-generated convex subset X of R̂, there is an idempotent
E ∈ M2(R) with PC (E ) = X. Thus M2(R) is regular.

Example

Consider X = [b − a,∞] ⊆ R̂.
Then we can choose

E =

(
0 −∞

b − a 0

)
∈ M2(R)

such that PC (E ) = X

b-a
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Groups of 2× 2 tropical matrices

Let S be a semigroup. It is well known that the maximal subgroups of S
are exactly the H-classes of idempotents and that any two maximal
subgroups in the same D-class are isomorphic.

Theorem

Let M ⊆ R̂ be a closed convex subset. The maximal subgroups in the
D-class corresponding to M are isomorphic to:

{1} if M = ∅;
R if M is a point or an interval with one real endpoint;

R× S2 if M is an interval with 2 real endpoints;

R o S2 if M = R̂.

Corollary

Every group of 2× 2 tropical matrices is torsion-free abelian, or has a
torsion-free abelian subgroup of index 2.
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