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Free centre-by-metabelian groups

Let F be the free group of rank n. The quotient F/[F ′′,F ] is the
free centre-by-metabelian group of rank n.

F

F ′

F ′′

[F ′′,F ]

It is the free group in the variety of groups determined by the
identical relation

[[[x1, x2], [x3, x4]], y ] ≡ 1.
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The torsion subgroup of F/[F ′′, F ]

Theorem (C.K. Gupta, 1973)

The free centre-by-metabelian group F/[F ′′,F ] of rank n is torsion
free for n = 2, 3, and for n ≥ 4 it contains an elementary abelian
2-group of rank

(n
4

)
in its centre.

The torsion subgroup is generated by the elements

w(xi1 , xi2 , xi3 , xi4) =[[xi1 , xi2 ], [x
−1
i3

, x−1
i4

]] [[xi3 , xi4 ], [x
−1
i1

, x−1
i2

]]

[[xi1 , xi3 ], [x
−1
i4

, x−1
i2

]] [[xi4 , xi2 ], [x
−1
i1

, x−1
i3

]]

[[xi1 , xi4 ], [x
−1
i2

, x−1
i3

]] [[xi2 , xi3 ], [x
−1
i1

, x−1
i4

]]

where xi1 , xi2 , xi3 , xi4 ∈ X and i1 < i2 < i3 < i4.
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Connection to homology groups

The Crucial Observation (Yu. V. Kuz’min, 1977)

Gupta’s torsion subgroup of F ′′/[F ′′,F ] is isomorphic to the
integral homology group H4(F/F ′) reduced modulo 2:

t(F ′′/[F ′′,F ]) = H4(F/F ′)⊗ Z2.

Kuz’min linked the torsion in the free centre-by-metabelian group
F/[F ′′,F ] to the fourth homology group H4(F/F ′) of the free
abelian group F/F ′ and gave a new proof of Gupta’s Theorem
using homological methods.
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Generalization

We may write the free centre-by-metabelian group as

F/[F ′′,F ] = F/[(F ′)′,F ] = F/[γ2(F
′),F ]

where γ2(F
′) is the second term of the lower central series of F ′.

More generally, we might wonder if the quotient F/[γc(F
′),F ]

contains elements of finite order for c ≥ 2.

Moreover, we may also wish to consider quotients of the form
F/[γc(R),F ], where R is an arbitrary normal subgroup of F .

For the purposes of this talk, we shall restrict attention to the case
R = F ′.
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The problem

We want to describe the torsion subgroup of F/[γcF
′,F ] for c ≥ 2.

F

F ′

γcF
′

[γcF
′,F ]

While F/γcF
′ is torsion free, elements of finite order may occur in

the central quotient γcF
′/[γcF

′,F ].

Aim: Describe the torsion subgroup of γcF
′/[γcF

′,F ].
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Known results

The following result is due to Gupta and Kuz’min for c = 2 and
Stöhr in full generality.

Theorem

Let G = F/F ′ be the free abelian group of rank n, then

t(γcF
′/[γcF

′,F ]) ∼=
{

H4(G , Zc), if c is a prime;
H6(G , Z2), if c = 4.

Since G = F/F ′ is free abelian of rank n, we have that Hk(G , Zp)
is an elementary abelian p-group of rank

(n
k

)
.

Hence we have that (for n large enough) F/[γcF
′,F ] contains

elements of finite order for c = 2, 3, 4, 5, 7, 9, 11, . . ..
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The case c = 6

The first unknown case, namely c = 6, was dealt with in recent
joint work with Ralph Stöhr.

Theorem (MJ and RS, Bull. Lond. Math. Soc. (to appear))

γ6F
′/[γ6F

′,F ] is torsion-free.

This new development became possible due to powerful results by
Bryant, Erdmann and Schocker on modular Lie powers.

For the rest of the talk I will discuss further progress on this
problem in the case where c is a product of at least two distinct
primes.
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Relation modules and Lie rings

The abelianization M = F ′/F ′′ is a module for the free abelian
group G = F/F ′ called the relation module.

For an arbitrary Z-free G -module V , let L(V ) denote the free Lie
ring on V . This is a graded Lie ring,

L(V ) =
⊕
c≥1

Lc(V )

where Lc(V ) is the degree c homogeneous component of L(V ).

Each homogeneous component is also a G -module, called the cth
Lie power of V .
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Lie powers and the centre

We have the following classical isomorphism of G -modules

γcF
′/γc+1F

′ ∼= Lc(M),

Trivialising the G -action yields the following result.

Lemma (Baumslag, Strebel and Thomson 1980)

Let G = F/F ′. Then there is an isomorphism of groups

γcF
′/[γcF

′,F ] ∼= Lc(M)⊗ZG Z.

Hence, in order to describe the torsion subgroup of γcF
′/[γcF

′,F ],
we consider elements of finite order in the tensor product

Lc(M)⊗ZG Z.
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Torsion and homology of Lie powers

There is a short exact sequence

0 −−−−→ Lc(M)
p−−−−→ Lc(M) −−−−→ Lc(M)⊗ Zp −−−−→ 0,

where the first map is multiplication by p and the second map is
reduction modulo p.

Part of the associated long exact homology sequence is

→ H1(G , Lc(M)⊗ Zp) → Lc(M)⊗ZG Z p−−−−→ Lc(M)⊗ZG Z →
↑

kernel = elements of order p
in Lc(M)⊗ZG Z

If H1(G , Lc(M)⊗ Zp) = 0 then Lc(M)⊗ZG Z
(and hence γcF

′/[γcF
′,F ]) contains no elements of order p.
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Results

For c a product of at least two distinct primes, p an arbitrary
prime, we prove that Lc(M)⊗ Zp is in some sense projective.

It follows that H1(G , Lc(M)⊗ Zp) = 0 and hence γcF
′/[γcF

′,F ]
contains no elements of order p.

Theorem (MJ and Ralph Stöhr, March 2009)

F/[γc(F
′),F ] is torsion-free whenever c is not a prime power.

Current state of affairs:

t(γcF
′/[γcF

′,F ]) ∼=


H4(G , Zc), if c is a prime;
H6(G , Z2), if c = 4:
0, if c is not a prime power.

The remaining challenge: Prime powers.

Marianne Johnson Modular Lie powers and free central extensions



Results

For c a product of at least two distinct primes, p an arbitrary
prime, we prove that Lc(M)⊗ Zp is in some sense projective.

It follows that H1(G , Lc(M)⊗ Zp) = 0 and hence γcF
′/[γcF

′,F ]
contains no elements of order p.

Theorem (MJ and Ralph Stöhr, March 2009)
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The Bryant-Schocker Decomposition

Theorem (R.M. Bryant and Manfred Schocker, 2006/7;
R.M. Bryant 2009)

Let K be a field of prime characteristic p, let G be a group, and let
V be a KG-module. Let d be a positive integer not divisible by p.
Then, for each non-negative integer m there is a submodule Bpmd

of Lpmd(V ) such that Bpmd is a direct summand of V⊗pmd and

Lpmd(V ) = Lpm
(Bd)⊕ Lpm−1

(Bpd)⊕ · · · ⊕ L1(Bpmd).
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