Green's \mathcal{J} -order and the rank of tropical matrices

Marianne Johnson (joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

Potsdam, 25th June 2011

The tropical semiring

Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} by $a \oplus b := \max(a, b)$, and $a \otimes b := a + b$, for all $a, b \in \mathbb{T}$ (where $a \oplus -\infty = -\infty \oplus a = a$ and $a \otimes -\infty = -\infty \otimes a = -\infty$). Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} by $a \oplus b := \max(a, b)$, and $a \otimes b := a + b$, for all $a, b \in \mathbb{T}$ (where $a \oplus -\infty = -\infty \oplus a = a$ and $a \otimes -\infty = -\infty \otimes a = -\infty$).

▶ (\mathbb{T}, \oplus) is a commutative monoid with identity element $-\infty$;

- (\mathbb{T}, \otimes) is a (commutative) monoid with identity element 0;
- \blacktriangleright \otimes distributes over \oplus ;
- ▶ $-\infty$ is an absorbing element with respect to \otimes ;
- For all $a \in \mathbb{T}$ we have $a \oplus a = a$.

We say that \mathbb{T} is a (commutative) **idempotent semiring**. It is often referred to as the **max-plus** or **tropical semiring** The tropical semiring has applications in diverse areas such as...

- ▶ analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- ▶ formal languages and automata
- statistical inference
- ▶ algebraic geometry...

Typically problems in application areas involve finding solutions to a system of linear equations over the tropical semiring.

Thus it is natural to consider matrices with entries in the tropical semiring...

Consider the set $M_n(\mathbb{T})$ of all $n \times n$ matrices with entries in \mathbb{T} . The operations \oplus and \otimes can be extended to such matrices in the usual way:

$$(A \oplus B)_{i,j} = A_{i,j} \oplus B_{i,j}, \text{ for all } A, B \in M_n(\mathbb{T})$$
$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^l A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{T}).$$

We study the multiplicative semigroup $(M_n(\mathbb{T}), \otimes)$.

We write \mathbb{T}^n to denote the set of all *n*-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{T}$ and extend \oplus to \mathbb{T}^n componentwise:

$$(x\oplus y)_i = x_i \oplus y_i.$$

We also define a scaling action of \mathbb{T} on \mathbb{T}^n :

$$(\lambda \otimes x)_i, \ldots, x_n) = \lambda \otimes x_i$$
, for all $\lambda \in \mathbb{T}$.

A tropical convex set X in \mathbb{T}^n is a subset that is closed under \oplus and scaling. We say that a subset $V \subseteq X$ is a **generating** set for X if every element of X can be written as a tropical linear combination of finitely many elements of V.

Green's relations on the semigroup $M_n(\mathbb{T})$

Let $A, B \in M_n(\mathbb{T})$.

(1) $A\mathcal{L}B \Leftrightarrow$ row space of A = row space of B.

(2) $A\mathcal{R}B \Leftrightarrow \text{col. space of } A = \text{col. space of } B.$

- (3) $A\mathcal{H}B \Leftrightarrow$ row space of A = row space of B and col. space of A = col. space of B.
- (4) $ADB \Leftrightarrow$ row space of $A \cong$ row space of B \Leftrightarrow col. space of $A \cong$ col. space of BRecent result of Hollings and Kambites.

(Note: The row space need **not** be linearly isomorphic to the column space.)

We describe **Green's** \mathcal{J} -order (and hence the corresponding \mathcal{J} -relation).

Is $\mathcal{D} = \mathcal{J}$?

Example $A\mathcal{J}B$ but $A\mathcal{D}B$.

$$A = \begin{pmatrix} -\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}$$

- ▶ Claim there exist matrices $P, Q, R, S \in M_4(\mathbb{T})$ such that A = PBQ and B = RAS.
- It is easy to check that C(A) can be generated by three elements, whilst C(B) cannot be generated by fewer than four elements.
- ▶ Thus the column spaces C(A) and C(B) are not linearly isomorphic and hence $A \not \square B$.

Is $\mathcal{D} = \mathcal{J}$?

Example $A\mathcal{J}B$ but $A\mathcal{D}B$.

$$A = \begin{pmatrix} -\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty \end{pmatrix}$$

- ▶ Claim there exist matrices $P, Q, R, S \in M_4(\mathbb{T})$ such that A = PBQ and B = RAS.
- It is easy to check that C(A) can be generated by three elements, whilst C(B) cannot be generated by fewer than four elements.
- ▶ Thus the column spaces C(A) and C(B) are not linearly isomorphic and hence $A \not \square B$.

Theorem. For the subsemigroup of matrices without $-\infty$ entries we have that $\mathcal{D} = \mathcal{J}$.

Theorem. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
- (iii) There is a T-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) R(A) embeds linearly into R(B);
- (ii) C(B) surjects linearly onto C(A);
- (iii) There exists $C \in M_n(\mathbb{T})$ with $A\mathcal{R}C \leq_{\mathcal{L}} B$.

Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) R(A) embeds linearly into R(B);
- (ii) C(B) surjects linearly onto C(A);
- (iii) There exists $C \in M_n(\mathbb{T})$ with $A\mathcal{R}C \leq_{\mathcal{L}} B$.

Lemma. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) C(A) embeds linearly into C(B);
- (ii) R(B) surjects linearly onto R(A);
- (iii) There exists $C \in M_n(\mathbb{T})$ with $A\mathcal{L}C \leq_{\mathcal{R}} B$.

There are several (non-equivalent) notions of the **rank** of a tropical matrix. We define three such here...

factor rank(A) = the minimum k such that A can be
factored as
$$A = CR$$
 where C is
 $n \times k$ and R is $k \times n$

det rank(A) = the maximum k such that A has a

$$k \times k$$
 minor M with $|M|^+ \neq |M|^-$

tropical rank(A) = the maximum k such that A has a $k \times k$ minor M where the max. is achieved twice in the permanent of M. Let $A, B \in M_n(\mathbb{T})$. Then it is known that

 $\begin{array}{lll} \mbox{factor } {\rm rank}(AB) &\leqslant & \min({\rm factor } {\rm rank}(A), {\rm factor } {\rm rank}(B)) \\ & \mbox{det } {\rm rank}(AB) &\leqslant & \min({\rm det } {\rm rank}(A), {\rm det } {\rm rank}(B)) \\ & \mbox{tropical } {\rm rank}(AB) &\leqslant & \min({\rm tropical } {\rm rank}(A), {\rm tropical } {\rm rank}(B)) \end{array}$

from which it follows easily that...

Let $A, B \in M_n(\mathbb{T})$. Then it is known that

 $\begin{array}{lll} \mbox{factor } {\rm rank}(AB) &\leqslant & \min({\rm factor } {\rm rank}(A), {\rm factor } {\rm rank}(B)) \\ & \mbox{det } {\rm rank}(AB) &\leqslant & \min({\rm det } {\rm rank}(A), {\rm det } {\rm rank}(B)) \\ & \mbox{tropical } {\rm rank}(AB) &\leqslant & \min({\rm tropical } {\rm rank}(A), {\rm tropical } {\rm rank}(B)) \end{array}$

from which it follows easily that...

Theorem. The factor rank, det rank and tropical rank are all \mathcal{J} -class invariants in $M_n(\mathbb{T})$.