Green's \mathcal{J}-order and the rank of tropical matrices

Marianne Johnson
(joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

Potsdam, 25th June 2011

The tropical semiring

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} by

$$
a \oplus b:=\max (a, b), \quad \text { and } \quad a \otimes b:=a+b, \quad \text { for all } a, b \in \mathbb{T}
$$

(where $a \oplus-\infty=-\infty \oplus a=a$ and $a \otimes-\infty=-\infty \otimes a=-\infty$).

The tropical semiring

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} by $a \oplus b:=\max (a, b), \quad$ and $\quad a \otimes b:=a+b, \quad$ for all $a, b \in \mathbb{T}$
(where $a \oplus-\infty=-\infty \oplus a=a$ and $a \otimes-\infty=-\infty \otimes a=-\infty$).

- (\mathbb{T}, \oplus) is a commutative monoid with identity element $-\infty$;
- (\mathbb{T}, \otimes) is a (commutative) monoid with identity element 0 ;
- \otimes distributes over \oplus;
- $-\infty$ is an absorbing element with respect to \otimes;
- For all $a \in \mathbb{T}$ we have $a \oplus a=a$.

We say that \mathbb{T} is a (commutative) idempotent semiring.
It is often referred to as the max-plus or tropical semiring

Motivation

The tropical semiring has applications in diverse areas such as...

- analysis of discrete event systems
- combinatorial optimisation and scheduling problems
- formal languages and automata
- statistical inference
- algebraic geometry...

Typically problems in application areas involve finding solutions to a system of linear equations over the tropical semiring.

Thus it is natural to consider matrices with entries in the tropical semiring...

Tropical matrices

Consider the set $M_{n}(\mathbb{T})$ of all $n \times n$ matrices with entries in \mathbb{T}. The operations \oplus and \otimes can be extended to such matrices in the usual way:

$$
\begin{aligned}
& (A \oplus B)_{i, j}=A_{i, j} \oplus B_{i, j}, \text { for all } A, B \in M_{n}(\mathbb{T}) \\
& (A \otimes B)_{i, j}=\bigoplus_{k=1}^{l} A_{i, k} \otimes B_{k, j}, \text { for all } A, B \in M_{n}(\mathbb{T})
\end{aligned}
$$

We study the multiplicative semigroup $\left(M_{n}(\mathbb{T}), \otimes\right)$.

Tropical convex sets

We write \mathbb{T}^{n} to denote the set of all n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in \mathbb{T}$ and extend \oplus to \mathbb{T}^{n} componentwise:

$$
(x \oplus y)_{i}=x_{i} \oplus y_{i} .
$$

We also define a scaling action of \mathbb{T} on \mathbb{T}^{n} :

$$
\left.(\lambda \otimes x)_{i}, \ldots, x_{n}\right)=\lambda \otimes x_{i}, \text { for all } \lambda \in \mathbb{T}
$$

A tropical convex set X in \mathbb{T}^{n} is a subset that is closed under \oplus and scaling. We say that a subset $V \subseteq X$ is a generating set for X if every element of X can be written as a tropical linear combination of finitely many elements of V.

Green's relations on the semigroup $M_{n}(\mathbb{T})$

Let $A, B \in M_{n}(\mathbb{T})$.
(1) $A \mathcal{L} B \Leftrightarrow$ row space of $A=$ row space of B.
(2) $A \mathcal{R} B \Leftrightarrow$ col. space of $A=$ col. space of B.
(3) $\quad A \mathcal{H} B \Leftrightarrow$ row space of $A=$ row space of B and col. space of $A=$ col. space of B.
(4) $A \mathcal{D} B \Leftrightarrow$ row space of $A \cong$ row space of B $\Leftrightarrow \quad$ col. space of $A \cong$ col. space of B Recent result of Hollings and Kambites.
(Note: The row space need not be linearly isomorphic to the column space.)

We describe Green's \mathcal{J}-order (and hence the corresponding \mathcal{J}-relation).

Is $\mathcal{D}=\mathcal{J}$?

Example $A \mathcal{J} B$ but $A \not \supset B$.
$A=\left(\begin{array}{cccc}-\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty\end{array}\right), B=\left(\begin{array}{cccc}-\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty\end{array}\right)$

- Claim there exist matrices $P, Q, R, S \in M_{4}(\mathbb{T})$ such that $A=P B Q$ and $B=R A S$.
- It is easy to check that $C(A)$ can be generated by three elements, whilst $C(B)$ cannot be generated by fewer than four elements.
- Thus the column spaces $C(A)$ and $C(B)$ are not linearly isomorphic and hence $A \mathscr{D} B$.

Is $\mathcal{D}=\mathcal{J}$?

Example $A \mathcal{J} B$ but $A \not \supset B$.
$A=\left(\begin{array}{cccc}-\infty & 0 & 1 & -\infty \\ -\infty & -\infty & 1 & -\infty \\ 0 & 0 & 0 & -\infty \\ -\infty & -\infty & -\infty & -\infty\end{array}\right), B=\left(\begin{array}{cccc}-\infty & 0 & 1 & 1 \\ -\infty & -\infty & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -\infty & -\infty & -\infty & -\infty\end{array}\right)$

- Claim there exist matrices $P, Q, R, S \in M_{4}(\mathbb{T})$ such that $A=P B Q$ and $B=R A S$.
- It is easy to check that $C(A)$ can be generated by three elements, whilst $C(B)$ cannot be generated by fewer than four elements.
- Thus the column spaces $C(A)$ and $C(B)$ are not linearly isomorphic and hence $A \mathscr{D} B$.

Theorem. For the subsemigroup of matrices without $-\infty$ entries we have that $\mathcal{D}=\mathcal{J}$.

Green's \mathcal{J}-order on $M_{n}(\mathbb{T})$

Theorem. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $A \leqslant_{\mathcal{J}} B$;
(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
(iii) There is a \mathbb{T}-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Embeddings and surjections of row/col. spaces

Lemma. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $R(A)$ embeds linearly into $R(B)$;
(ii) $C(B)$ surjects linearly onto $C(A)$;
(iii) There exists $C \in M_{n}(\mathbb{T})$ with $A \mathcal{R} C \leqslant_{\mathcal{L}} B$.

Embeddings and surjections of row/col. spaces

Lemma. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $R(A)$ embeds linearly into $R(B)$;
(ii) $C(B)$ surjects linearly onto $C(A)$;
(iii) There exists $C \in M_{n}(\mathbb{T})$ with $A \mathcal{R} C \leqslant_{\mathcal{L}} B$.

Lemma. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $C(A)$ embeds linearly into $C(B)$;
(ii) $R(B)$ surjects linearly onto $R(A)$;
(iii) There exists $C \in M_{n}(\mathbb{T})$ with $A \mathcal{L} C \leqslant_{\mathcal{R}} B$.

The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

$$
\begin{aligned}
& \text { factor } \operatorname{rank}(A)= \text { the minimum } k \text { such that } A \text { can be } \\
& \begin{array}{l}
\text { factored as } A=C R \text { where } C \text { is } \\
n \times k \text { and } R \text { is } k \times n
\end{array} \\
& \text { det } \operatorname{rank}(A)=\begin{array}{l}
\text { the maximum } k \text { such that } A \text { has a } \\
\\
k \times k \text { minor } M \text { with }|M|^{+} \neq|M|^{-}
\end{array}
\end{aligned}
$$

tropical $\operatorname{rank}(A)=$ the maximum k such that A has a $k \times k$ minor M where the max. is achieved twice in the permanent of M.

Tropical rank-product inequalities

Let $A, B \in M_{n}(\mathbb{T})$. Then it is known that
factor $\operatorname{rank}(A B) \leqslant \min ($ factor $\operatorname{rank}(A)$, factor $\operatorname{rank}(B))$ det $\operatorname{rank}(A B) \leqslant \min (\operatorname{det} \operatorname{rank}(A)$, det $\operatorname{rank}(B))$
$\operatorname{tropical} \operatorname{rank}(A B) \leqslant \min (\operatorname{tropical} \operatorname{rank}(A), \operatorname{tropical} \operatorname{rank}(B))$

from which it follows easily that...

Tropical rank-product inequalities

Let $A, B \in M_{n}(\mathbb{T})$. Then it is known that
factor $\operatorname{rank}(A B) \leqslant \min ($ factor $\operatorname{rank}(A)$, factor $\operatorname{rank}(B))$ $\operatorname{det} \operatorname{rank}(A B) \leqslant \min (\operatorname{det} \operatorname{rank}(A), \operatorname{det} \operatorname{rank}(B))$
tropical $\operatorname{rank}(A B) \leqslant \min (\operatorname{tropical} \operatorname{rank}(A), \operatorname{tropical} \operatorname{rank}(B))$
from which it follows easily that...
Theorem. The factor rank, det rank and tropical rank are all \mathcal{J}-class invariants in $M_{n}(\mathbb{T})$.

