Idempotent tropical matrices

Marianne Johnson (joint work with Zur Izhakian and Mark Kambites) arXiv:1203.2449v1 [math.GR]

16th March 2012

Research supported by EPSRC Grant EP/H000801/1 and the Alexander von Humboldt Foundation.

Recall the **tropical semifield**, $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes)$, where

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b.$$

Let $M_n(\mathbb{FT})$ denote the set of all $n \times n$ matrices over \mathbb{FT} , with multiplication \otimes defined as you would expect:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{FT})$$

It is easy to see that $(M_n(\mathbb{FT}), \otimes)$ is a **semigroup**.

We write \mathbb{FT}^n to denote the set of all *n*-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{FT}$. Then \mathbb{FT}^n has the structure of an \mathbb{FT} -module:

 $(x \oplus y)_i = x_i \oplus y_i, \quad (\lambda \otimes x)_i = \lambda \otimes x_i,$

for all $x, y \in \mathbb{FT}^n$ and all $\lambda \in \mathbb{FT}$.

A **tropical polytope** is a finitely generated submodule of \mathbb{FT}^n .

We write \mathbb{FT}^n to denote the set of all *n*-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in \mathbb{FT}$. Then \mathbb{FT}^n has the structure of an \mathbb{FT} -module:

 $(x \oplus y)_i = x_i \oplus y_i, \quad (\lambda \otimes x)_i = \lambda \otimes x_i,$

for all $x, y \in \mathbb{FT}^n$ and all $\lambda \in \mathbb{FT}$.

A **tropical polytope** is a finitely generated submodule of \mathbb{FT}^n .

Let $A \in M_n(\mathbb{FT})$. We define the **row space** $R(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the rows of A.

Similarly, we define the **column space** $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

- ▶ The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n .
- ▶ We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

- ▶ The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n .
- ▶ We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.
- ► The **generator dimension** of X is the minimum cardinality of a generating set for X.
- ▶ The **dual dimension** of X is the minimum k such that X embeds linearly into \mathbb{FT}^k .

Let $X \subseteq \mathbb{FT}^n$ be a tropical polytope.

- ► The **tropical dimension** of X is the maximum topological dimension of X regarded as a subset of \mathbb{R}^n .
- ▶ We say that X has **pure tropical dimension** k if every open subset of X has topological dimension k.
- ► The **generator dimension** of X is the minimum cardinality of a generating set for X.
- ▶ The **dual dimension** of X is the minimum k such that X embeds linearly into \mathbb{FT}^k .

In general, these dimensions can be different. However...

Idempotents, projectivity and dimensions

```
Theorem [IJK] Let X \subseteq \mathbb{FT}^n be a tropical polytope.
There is a positive integer k such that X has pure tropical dimension k, generator dimension k and dual dimension k if and only if
X is the column space of an idempotent if and only if
X is projective as an \mathbb{FT}-module.
```

Idempotents, projectivity and dimensions

```
Theorem [IJK] Let X \subseteq \mathbb{FT}^n be a tropical polytope.
There is a positive integer k such that X has pure tropical dimension k, generator dimension k and dual dimension k if and only if
X is the column space of an idempotent if and only if
X is projective as an \mathbb{FT}-module.
```

► If this common dimension is k we say that X is a projective k-polytope.

Idempotents, projectivity and dimensions

```
Theorem [IJK] Let X \subseteq \mathbb{FT}^n be a tropical polytope.
There is a positive integer k such that X has pure tropical dimension k, generator dimension k and dual dimension k if and only if
X is the column space of an idempotent if and only if
X is projective as an \mathbb{FT}-module.
```

- ► If this common dimension is k we say that X is a projective k-polytope.
- ▶ Moreover, if E is an idempotent with X = C(E), we say that E has **rank** k. (Note: $1 \leq \operatorname{rank}(E) \leq n$.)

Let S be a semigroup. Around every idempotent $E \in S$ there is a unique maximal subgroup H_E (in semigroup language, this is the \mathcal{H} -class of E). Let S be a semigroup. Around every idempotent $E \in S$ there is a unique maximal subgroup H_E (in semigroup language, this is the \mathcal{H} -class of E).

Theorem [IJK]

Let E be an idempotent in $M_n(\mathbb{FT})$ and let H_E denote the maximal subgroup containing E. Then

- ► H_E is isomorphic to the group of \mathbb{FT} -automorphisms of the column space C(E)
- ► H_E is isomorphic to the group of FT-automorphisms of the row space R(E).

Maximal subgroups for idempotents of full rank

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices. Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem [IJK]

Let E be an idempotent of rank n in $M_n(\mathbb{FT})$ and define

 $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.$

Then $H_E \cong G_E$.

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

```
Theorem [IJK]
Let E be an idempotent of rank n in M_n(\mathbb{FT}) and define
G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.
Then H_E \cong G_E.
```

Theorem [IJK]

Every $\mathbb{FT}\text{-}\mathrm{module}$ automorphism of a projective $n\text{-}\mathrm{polytope}$

(i) extends to an automorphism of \mathbb{FT}^n and

(ii) is a (classical) affine linear map.

Theorem [IJK] Let *E* be an idempotent of rank *n* n $M_n(\mathbb{FT})$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$. Theorem [IJK]

Let *E* be an idempotent of rank *n* n $M_n(\mathbb{FT})$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$.

Theorem [IJK]

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$. Theorem [IJK]

Let *E* be an idempotent of rank *n* n $M_n(\mathbb{FT})$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$.

Theorem [IJK]

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$.

Corollary [IJK]

Let H be a maximal subgroup of $M_n(\mathbb{FT})$ containing a rank k idempotent. Then $H \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_k$.

Idempotents, groups and finite metrics

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- \blacktriangleright *E* is symmetric;
- $\blacktriangleright E \otimes E = E;$
- C(E) has tropical dimension n.

Theorem. [JK] Let E be an idempotent corresponding to a metric d on n points. Then $H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space ([n], d).

Idempotents, groups and finite metrics

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- \blacktriangleright *E* is symmetric;
- $\blacktriangleright E \otimes E = E;$
- C(E) has tropical dimension n.

Theorem. [JK] Let E be an idempotent corresponding to a metric d on n points. Then $H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space ([n], d).

Corollary. [JK] Let G be a finite group. Then $\mathbb{R} \times G$ is a maximal subgroup of $M_n(\mathbb{FT})$, for n sufficiently large.