Green's \mathcal{J}-order and the rank of tropical matrices

Marianne Johnson (joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

Groups and Semigroups: Interactions and Computations, Lisbon, 29th July 2011

Tropical semirings and tropical matrices

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} by

$$
\begin{aligned}
a \oplus b & =\max (a, b), & a \otimes b:=a+b, \\
(a \oplus-\infty & =-\infty \oplus a=a, & a \otimes-\infty=-\infty \otimes a=-\infty) .
\end{aligned}
$$

We say that \mathbb{T} is a (commutative) idempotent semiring.
It is often referred to as the max-plus or tropical semiring.
We also define the finitary tropical semiring,
$\mathbb{F T}=(\mathbb{R}, \oplus, \otimes)$.
Throughout let $S=\mathbb{T}$ or $\mathbb{F} \mathbb{T}$.
We study the multiplicative semigroup $\left(M_{n}(S), \otimes\right)$ of all $n \times n$ matrices with entries in S.

Tropical convex sets

We write S^{n} to denote the set of all n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in S$ and extend \oplus to S^{n} componentwise:

$$
(x \oplus y)_{i}=x_{i} \oplus y_{i}
$$

We also define a scaling action of S on S^{n} :

$$
(\lambda \otimes x)_{i}=\lambda \otimes x_{i}, \text { for all } \lambda \in S
$$

A tropical convex set X in S^{n} is a subset that is closed under \oplus and scaling.

Green's relations

Let $S=\mathbb{T}$ or $\mathbb{F} \mathbb{T}$ and let $A, B \in M_{n}(S)$.
(1) $\quad A \mathcal{L} B \Leftrightarrow$ row space of $A=$ row space of B.
(2) $A \mathcal{R} B \Leftrightarrow$ col. space of $A=$ col. space of B.
(3) $A \mathcal{D} B \Leftrightarrow$ row space of $A \cong$ row space of B
$\Leftrightarrow \quad$ col. space of $A \cong$ col. space of B
(Hollings and Kambites, 2010.)
We shall describe Green's \mathcal{J}-order and hence the corresponding \mathcal{J}-relation.

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?
Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?
Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geqslant 3$.

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?
Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geqslant 3$.

Proposition. $\mathcal{D}=\mathcal{J}$ in $M_{2}(\mathbb{T})$.

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?
Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geqslant 3$.

Proposition. $\mathcal{D}=\mathcal{J}$ in $M_{2}(\mathbb{T})$.
Theorem. The \mathcal{J}-order in $M_{n}(\mathbb{F T})$ is inherited from the \mathcal{J}-order in $M_{n}(\mathbb{T})$.

Comparing \mathcal{D} and \mathcal{J}

First question should be is $\mathcal{D}=\mathcal{J}$?
Theorem. (Izhakian and Margolis)
$\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

- We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \geqslant 3$.

Proposition. $\mathcal{D}=\mathcal{J}$ in $M_{2}(\mathbb{T})$.
Theorem. The \mathcal{J}-order in $M_{n}(\mathbb{F} \mathbb{T})$ is inherited from the \mathcal{J}-order in $M_{n}(\mathbb{T})$.

However...
Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$ for all $n \geqslant 1$.

Tropical projective space

We define tropical projective space $\mathcal{P} \mathbb{F T}^{n}$ by identifying two elements of $\mathbb{F} \mathbb{T}^{n}$ if one is a finite tropical multiple of the other.

Tropical projective space

We define tropical projective space $\mathcal{P} \mathbb{F T}^{n}$ by identifying two elements of $\mathbb{F} \mathbb{T}^{n}$ if one is a finite tropical multiple of the other.

Note that we may identify $\mathcal{P F} \mathbb{T}^{n}$ with \mathbb{R}^{n-1} via

$$
\left[x_{1}, \ldots, x_{n}\right] \mapsto\left(x_{1}-x_{n}, \ldots, x_{n-1}-x_{n}\right)
$$

Tropical projective space

We define tropical projective space $\mathcal{P} \mathbb{F T}^{n}$ by identifying two elements of \mathbb{F}^{n} if one is a finite tropical multiple of the other.

Note that we may identify $\mathcal{P} \mathbb{F} \mathbb{T}^{n}$ with \mathbb{R}^{n-1} via

$$
\left[x_{1}, \ldots, x_{n}\right] \mapsto\left(x_{1}-x_{n}, \ldots, x_{n-1}-x_{n}\right)
$$

Recall that we have a "distance function" on $\mathbb{F} \mathbb{T}^{n}$ defined by $d_{H}(x, y)=0$ if x is a finite tropical multiple of y and

$$
\mathrm{d}_{\mathrm{H}}(x, y)=\max \left(y_{i}-x_{i}\right)-\min \left(y_{i}-x_{i}\right) .
$$

Tropical projective space

We define tropical projective space $\mathcal{P} \mathbb{F T}^{n}$ by identifying two elements of \mathbb{F}^{n} if one is a finite tropical multiple of the other.
Note that we may identify $\mathcal{P} \mathbb{F} \mathbb{T}^{n}$ with \mathbb{R}^{n-1} via

$$
\left[x_{1}, \ldots, x_{n}\right] \mapsto\left(x_{1}-x_{n}, \ldots, x_{n-1}-x_{n}\right)
$$

Recall that we have a "distance function" on $\mathbb{F} \mathbb{T}^{n}$ defined by $d_{H}(x, y)=0$ if x is a finite tropical multiple of y and

$$
\mathrm{d}_{\mathrm{H}}(x, y)=\max \left(y_{i}-x_{i}\right)-\min \left(y_{i}-x_{i}\right) .
$$

It can be shown that d_{H} is a metric on $\mathcal{P} \mathbb{F} \mathbb{T}^{n}$.

The key results used in the proof

1. Easy to check that d_{H} induces the usual topology on \mathbb{R}^{n-1}.

The key results used in the proof

1. Easy to check that d_{H} induces the usual topology on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{F} \mathbb{T}^{n}$ induces a subset $\mathcal{P} X$ of $\mathcal{P} \mathbb{F T}^{n}$ termed the projectivisation of X.

The key results used in the proof

1. Easy to check that d_{H} induces the usual topology on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{F} \mathbb{T}^{n}$ induces a subset $\mathcal{P} X$ of $\mathcal{P} \mathbb{F T}^{n}$ termed the projectivisation of X.

The key results used in the proof

1. Easy to check that d_{H} induces the usual topology on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{F} \mathbb{T}^{n}$ induces a subset $\mathcal{P} X$ of $\mathcal{P} \mathbb{F T}^{n}$ termed the projectivisation of X.
2. The projectivisation of each finitely generated convex set $X \subseteq \mathbb{F}^{n}$, denoted $\mathcal{P} X$, is a closed and bounded (and hence compact) subset of $\mathcal{P} \mathbb{F T}^{n}$.

The key results used in the proof

1. Easy to check that d_{H} induces the usual topology on \mathbb{R}^{n-1}.

Each finitely generated convex set $X \subseteq \mathbb{F} \mathbb{T}^{n}$ induces a subset $\mathcal{P} X$ of $\mathcal{P} \mathbb{F T}^{n}$ termed the projectivisation of X.
2. The projectivisation of each finitely generated convex set $X \subseteq \mathbb{F} \mathbb{T}^{n}$, denoted $\mathcal{P} X$, is a closed and bounded (and hence compact) subset of $\mathcal{P} \mathbb{F T}^{n}$.
3. Metric Duality Theorem:

Let $A \in M_{n}(\mathbb{F} \mathbb{T})$. There exist mutually inverse isometric embeddings between $\mathcal{P} R(A)$ and $\mathcal{P} C(A)$.

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not \supset B$.

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not D B$.
Then there is a non-surjective isometric embedding

$$
f: \mathcal{P} R(A) \rightarrow \mathcal{P} R(A)
$$

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not \supset B$.
Then there is a non-surjective isometric embedding

$$
f: \mathcal{P} R(A) \rightarrow \mathcal{P} R(A)
$$

Since f is not surjective and has closed image we may choose $x_{0} \in \mathcal{P} R(A)$ and $\varepsilon>0$ such that $x_{0} \notin f(\mathcal{P} R(A))$ and $\mathrm{d}_{\mathrm{H}}\left(x_{0}, z\right) \geqslant \varepsilon$ for all $z \in f\left(X_{0}\right)$.

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not D B$.
Then there is a non-surjective isometric embedding

$$
f: \mathcal{P} R(A) \rightarrow \mathcal{P} R(A)
$$

Since f is not surjective and has closed image we may choose $x_{0} \in \mathcal{P} R(A)$ and $\varepsilon>0$ such that $x_{0} \notin f(\mathcal{P} R(A))$ and $\mathrm{d}_{\mathrm{H}}\left(x_{0}, z\right) \geqslant \varepsilon$ for all $z \in f\left(X_{0}\right)$.

Now set $X_{i}=f^{i}(\mathcal{P} R(A))$ and let $x_{i}=f^{i}\left(x_{0}\right) \in X_{i}$.
Since f is an isometric embedding we have $\mathrm{d}_{\mathrm{H}}\left(x_{i}, y\right) \geqslant \varepsilon$ for all $y \in X_{i+1}$.

Comparing \mathcal{D} and \mathcal{J}

Theorem. $\mathcal{D}=\mathcal{J}$ in $M_{n}(\mathbb{F} \mathbb{T})$.
Sketch proof Clearly $A \mathcal{D} B \Rightarrow A \mathcal{J} B$.
Suppose for contradiction that $A \mathcal{J} B$, but $A \not \supset B$.
Then there is a non-surjective isometric embedding

$$
f: \mathcal{P} R(A) \rightarrow \mathcal{P} R(A)
$$

Since f is not surjective and has closed image we may choose $x_{0} \in \mathcal{P} R(A)$ and $\varepsilon>0$ such that $x_{0} \notin f(\mathcal{P} R(A))$ and $\mathrm{d}_{\mathrm{H}}\left(x_{0}, z\right) \geqslant \varepsilon$ for all $z \in f\left(X_{0}\right)$.

Now set $X_{i}=f^{i}(\mathcal{P} R(A))$ and let $x_{i}=f^{i}\left(x_{0}\right) \in X_{i}$.
Since f is an isometric embedding we have $\mathrm{d}_{\mathrm{H}}\left(x_{i}, y\right) \geqslant \varepsilon$ for all $y \in X_{i+1}$.

In particular $\mathrm{d}_{\mathrm{h}}\left(x_{i}, x_{j}\right) \geqslant \varepsilon$ for all $j>i$. This contradicts the compactness of $\mathcal{P} R(A) \subseteq \mathcal{P} \mathbb{F}^{n}=\mathbb{R}^{n-1}$.

Green's \mathcal{J}-order on $M_{n}(\mathbb{T})$

Theorem. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $A \leqslant_{\mathcal{J}} B$;
(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

Green's \mathcal{J}-order on $M_{n}(\mathbb{T})$

Theorem. Let $A, B \in M_{n}(\mathbb{T})$. Then the following are equivalent.
(i) $A \leqslant_{\mathcal{J}} B$;
(ii) There is a \mathbb{T}-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
(iii) There is a \mathbb{T}-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

$$
\begin{aligned}
& \text { factor } \operatorname{rank}(A)= \begin{array}{l}
\text { the minimum } k \text { such that } A \text { can be } \\
\\
\\
\text { factored as } A=C R \text { where } C \text { is } \\
n \times k \text { and } R \text { is } k \times n
\end{array} \\
& \operatorname{det} \operatorname{rank}(A)=\begin{array}{l}
\text { the maximum } k \text { such that } A \text { has a } \\
k \times k \text { minor } M \text { with }|M|^{+} \neq|M|^{-}
\end{array} \\
& \text {tropical } \operatorname{rank}(A)=\begin{array}{l}
\text { the maximum } k \text { such that } A \text { has a } \\
k \times k \text { minor } M \text { where the max. is } \\
\\
\\
\text { achieved uniquely in the permanent of } M .
\end{array}
\end{aligned}
$$

The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a tropical matrix. We define three such here...

$$
\begin{aligned}
& \text { factor } \operatorname{rank}(A)= \begin{array}{l}
\text { the minimum } k \text { such that } A \text { can be } \\
\\
\\
\text { factored as } A=C R \text { where } C \text { is } \\
n \times k \text { and } R \text { is } k \times n
\end{array} \\
& \operatorname{det} \operatorname{rank}(A)=\begin{array}{l}
\text { the maximum } k \text { such that } A \text { has a } \\
k \times k \text { minor } M \text { with }|M|^{+} \neq|M|^{-}
\end{array} \\
& \text {tropical } \operatorname{rank}(A)=\begin{array}{l}
\text { the maximum } k \text { such that } A \text { has a } \\
k \times k \text { minor } M \text { where the max. is } \\
\\
\\
\text { achieved uniquely in the permanent of } M .
\end{array}
\end{aligned}
$$

Observation. The factor rank, det rank, tropical rank (and others) are all \mathcal{J}-class invariants in $M_{n}(\mathbb{T})$.

Comparing \mathcal{D} and \mathcal{J}

Example.

$$
A=\left(\begin{array}{ccc}
-\infty & 0 & 1 \\
-\infty & -\infty & 1 \\
0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{ccc}
-\infty & 0 & 2 \\
-\infty & -\infty & 2 \\
0 & 0 & 0
\end{array}\right)
$$

- It is easy to see that $C(A) \subseteq C(B)$. Hence $A \leqslant_{\mathcal{R}} B$.
- It is also easy to see that $R(B) \subseteq R(A)$. Hence $B \leqslant_{\mathcal{L}} A$.
- Thus we have shown that $A \mathcal{J} B$.

Comparing \mathcal{D} and \mathcal{J}

Example.

$$
A=\left(\begin{array}{ccc}
-\infty & 0 & 1 \\
-\infty & -\infty & 1 \\
0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{ccc}
-\infty & 0 & 2 \\
-\infty & -\infty & 2 \\
0 & 0 & 0
\end{array}\right)
$$

- It is easy to see that $C(A) \subseteq C(B)$. Hence $A \leqslant_{\mathcal{R}} B$.
- It is also easy to see that $R(B) \subseteq R(A)$. Hence $B \leqslant_{\mathcal{L}} A$.
- Thus we have shown that $A \mathcal{J} B$.
- Claim that $\mathcal{P} C(A)$ is not isometric to $\mathcal{P} C(B)$. Thus, $A \not D B$ since any isomorphism between the column spaces would induce an isometry between the projective column spaces.
- It follows that $\mathcal{D} \neq \mathcal{J}$ in $M_{n}(\mathbb{T})$ for all $n \geqslant 3$.

