Green's \mathcal{J} -order and the rank of tropical matrices

Marianne Johnson (joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

Groups and Semigroups: Interactions and Computations, Lisbon, 29th July 2011

Tropical semirings and tropical matrices

Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} by

$$\begin{array}{ll} a \oplus b := \max(a, b), & a \otimes b := a + b, \\ (a \oplus -\infty = -\infty \oplus a = a, & a \otimes -\infty = -\infty \otimes a = -\infty). \end{array}$$

We say that \mathbb{T} is a (commutative) idempotent semiring. It is often referred to as the max-plus or **tropical semiring**.

We also define the **finitary tropical semiring**, $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes).$

Throughout let $S = \mathbb{T}$ or \mathbb{FT} .

We study the multiplicative semigroup $(M_n(S), \otimes)$ of all $n \times n$ matrices with entries in S.

We write S^n to denote the set of all *n*-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in S$ and extend \oplus to S^n componentwise:

$$(x\oplus y)_i = x_i \oplus y_i.$$

We also define a scaling action of S on S^n :

$$(\lambda \otimes x)_i = \lambda \otimes x_i$$
, for all $\lambda \in S$.

A **tropical convex set** X in S^n is a subset that is closed under \oplus and scaling.

Let $S = \mathbb{T}$ or \mathbb{FT} and let $A, B \in M_n(S)$.

(1) $A\mathcal{L}B \Leftrightarrow \text{row space of } A = \text{row space of } B.$

(2) $A\mathcal{R}B \Leftrightarrow \text{col. space of } A = \text{col. space of } B$.

(3) $ADB \Leftrightarrow$ row space of $A \cong$ row space of B \Leftrightarrow col. space of $A \cong$ col. space of B(Hollings and Kambites, 2010.)

We shall describe **Green's** \mathcal{J} -order and hence the corresponding \mathcal{J} -relation.

First question should be is $\mathcal{D} = \mathcal{J}$?

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.

• We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \ge 3$.

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.

• We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \ge 3$.

Proposition. $\mathcal{D} = \mathcal{J}$ in $M_2(\mathbb{T})$.

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.

▶ We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \ge 3$.

Proposition. $\mathcal{D} = \mathcal{J}$ in $M_2(\mathbb{T})$.

Theorem. The \mathcal{J} -order in $M_n(\mathbb{FT})$ is inherited from the \mathcal{J} -order in $M_n(\mathbb{T})$.

First question should be is $\mathcal{D} = \mathcal{J}$?

Theorem. (Izhakian and Margolis) $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.

▶ We have also constructed a nice example (with pictures!) to show that $\mathcal{D} \neq \mathcal{J}$ for all $n \ge 3$.

Proposition. $\mathcal{D} = \mathcal{J}$ in $M_2(\mathbb{T})$.

Theorem. The \mathcal{J} -order in $M_n(\mathbb{FT})$ is inherited from the \mathcal{J} -order in $M_n(\mathbb{T})$.

However...

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$ for all $n \ge 1$.

Note that we may identify \mathcal{PFT}^n with \mathbb{R}^{n-1} via

$$[x_1,\ldots,x_n]\mapsto (x_1-x_n,\ldots,x_{n-1}-x_n).$$

Note that we may identify \mathcal{PFT}^n with \mathbb{R}^{n-1} via

$$[x_1,\ldots,x_n]\mapsto (x_1-x_n,\ldots,x_{n-1}-x_n).$$

Recall that we have a "distance function" on \mathbb{FT}^n defined by $d_H(x, y) = 0$ if x is a finite tropical multiple of y and

$$d_{\mathrm{H}}(x,y) = \max(y_i - x_i) - \min(y_i - x_i).$$

Note that we may identify \mathcal{PFT}^n with \mathbb{R}^{n-1} via

$$[x_1,\ldots,x_n]\mapsto (x_1-x_n,\ldots,x_{n-1}-x_n).$$

Recall that we have a "distance function" on \mathbb{FT}^n defined by $d_H(x, y) = 0$ if x is a finite tropical multiple of y and

$$d_{\mathrm{H}}(x,y) = \max(y_i - x_i) - \min(y_i - x_i).$$

It can be shown that d_H is a **metric** on \mathcal{PFT}^n .

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}\mathbb{FT}^n$ termed the **projectivisation** of X.

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}\mathbb{FT}^n$ termed the **projectivisation** of X.

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}\mathbb{FT}^n$ termed the **projectivisation** of X.

2. The projectivisation of each finitely generated convex set $X \subseteq \mathbb{FT}^n$, denoted $\mathcal{P}X$, is a closed and bounded (and hence **compact**) subset of $\mathcal{P}\mathbb{FT}^n$.

Each finitely generated convex set $X \subseteq \mathbb{FT}^n$ induces a subset $\mathcal{P}X$ of $\mathcal{P}\mathbb{FT}^n$ termed the **projectivisation** of X.

2. The projectivisation of each finitely generated convex set $X \subseteq \mathbb{FT}^n$, denoted $\mathcal{P}X$, is a closed and bounded (and hence **compact**) subset of $\mathcal{P}\mathbb{FT}^n$.

3. Metric Duality Theorem:

Let $A \in M_n(\mathbb{FT})$. There exist mutually inverse isometric embeddings between $\mathcal{P}R(A)$ and $\mathcal{P}C(A)$.

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{D}B$.

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{D}B$. Then there is a non-surjective isometric embedding

 $f: \mathcal{P}R(A) \to \mathcal{P}R(A).$

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{P}B$. Then there is a non-surjective isometric embedding

 $f: \mathcal{P}R(A) \to \mathcal{P}R(A).$

Since f is not surjective and has closed image we may choose $x_0 \in \mathcal{P}R(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{P}R(A))$ and $d_H(x_0, z) \ge \varepsilon$ for all $z \in f(X_0)$.

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{P}B$. Then there is a non-surjective isometric embedding

 $f: \mathcal{P}R(A) \to \mathcal{P}R(A).$

Since f is not surjective and has closed image we may choose $x_0 \in \mathcal{P}R(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{P}R(A))$ and $d_H(x_0, z) \ge \varepsilon$ for all $z \in f(X_0)$.

Now set $X_i = f^i(\mathcal{P}R(A))$ and let $x_i = f^i(x_0) \in X_i$. Since f is an isometric embedding we have $d_H(x_i, y) \ge \varepsilon$ for all $y \in X_{i+1}$.

Theorem. $\mathcal{D} = \mathcal{J}$ in $M_n(\mathbb{FT})$.

Sketch proof Clearly $A\mathcal{D}B \Rightarrow A\mathcal{J}B$. Suppose for contradiction that $A\mathcal{J}B$, but $A\mathcal{P}B$. Then there is a non-surjective isometric embedding

 $f: \mathcal{P}R(A) \to \mathcal{P}R(A).$

Since f is not surjective and has closed image we may choose $x_0 \in \mathcal{P}R(A)$ and $\varepsilon > 0$ such that $x_0 \notin f(\mathcal{P}R(A))$ and $d_H(x_0, z) \ge \varepsilon$ for all $z \in f(X_0)$.

Now set $X_i = f^i(\mathcal{P}R(A))$ and let $x_i = f^i(x_0) \in X_i$. Since f is an isometric embedding we have $d_H(x_i, y) \ge \varepsilon$ for all $y \in X_{i+1}$.

In particular $d_h(x_i, x_j) \ge \varepsilon$ for all j > i. This contradicts the compactness of $\mathcal{P}R(A) \subseteq \mathcal{P}\mathbb{F}\mathbb{T}^n = \mathbb{R}^{n-1}$. **Theorem.** Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

Theorem. Let $A, B \in M_n(\mathbb{T})$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
- (iii) There is a \mathbb{T} -linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

The rank of a tropical matrix

There are several (non-equivalent) notions of the **rank** of a tropical matrix. We define three such here...

factor rank(A) = the minimum k such that A can be
factored as
$$A = CR$$
 where C is
 $n \times k$ and R is $k \times n$

det rank(A) = the maximum k such that A has a

$$k \times k$$
 minor M with $|M|^+ \neq |M|^-$

tropical rank(A) = the maximum k such that A has a $k \times k$ minor M where the max. is achieved uniquely in the permanent of M.

The rank of a tropical matrix

There are several (non-equivalent) notions of the **rank** of a tropical matrix. We define three such here...

factor rank(A) = the minimum k such that A can be
factored as
$$A = CR$$
 where C is
 $n \times k$ and R is $k \times n$

det rank(A) = the maximum k such that A has a

$$k \times k$$
 minor M with $|M|^+ \neq |M|^-$

tropical rank(A) = the maximum k such that A has a $k \times k$ minor M where the max. is achieved uniquely in the permanent of M.

Observation. The factor rank, det rank, tropical rank (and others) are all \mathcal{J} -class invariants in $M_n(\mathbb{T})$.

Example.

$$A = \begin{pmatrix} -\infty & 0 & 1\\ -\infty & -\infty & 1\\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 2\\ -\infty & -\infty & 2\\ 0 & 0 & 0 \end{pmatrix}$$

- ▶ It is easy to see that $C(A) \subseteq C(B)$. Hence $A \leq_{\mathcal{R}} B$.
- ▶ It is also easy to see that $R(B) \subseteq R(A)$. Hence $B \leq_{\mathcal{L}} A$.
- Thus we have shown that $A\mathcal{J}B$.

Example.

$$A = \begin{pmatrix} -\infty & 0 & 1\\ -\infty & -\infty & 1\\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} -\infty & 0 & 2\\ -\infty & -\infty & 2\\ 0 & 0 & 0 \end{pmatrix}$$

- ▶ It is easy to see that $C(A) \subseteq C(B)$. Hence $A \leq_{\mathcal{R}} B$.
- ▶ It is also easy to see that $R(B) \subseteq R(A)$. Hence $B \leq_{\mathcal{L}} A$.
- Thus we have shown that $A\mathcal{J}B$.
- Claim that $\mathcal{P}C(A)$ is not isometric to $\mathcal{P}C(B)$. Thus, $A \not \!\!\!\! \mathcal{D}B$ since any isomorphism between the column spaces would induce an isometry between the projective column spaces.
- It follows that $\mathcal{D} \neq \mathcal{J}$ in $M_n(\mathbb{T})$ for all $n \ge 3$.