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Tropical semirings and tropical matrices

Let T = R ∪ {−∞} and define two binary operations on T by

a⊕ b := max(a, b), a⊗ b := a+ b,
(a⊕−∞ = −∞⊕ a = a, a⊗−∞ = −∞⊗ a = −∞).

We say that T is a (commutative) idempotent semiring.
It is often referred to as the max-plus or tropical semiring.

We also define the finitary tropical semiring,
FT = (R,⊕,⊗).

Throughout let S = T or FT.
We study the multiplicative semigroup (Mn(S),⊗) of all n× n
matrices with entries in S.
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Tropical convex sets

We write Sn to denote the set of all n-tuples x = (x1, . . . , xn)
with xi ∈ S and extend ⊕ to Sn componentwise:

(x⊕ y)i = xi ⊕ yi.

We also define a scaling action of S on Sn:

(λ⊗ x)i = λ⊗ xi, for all λ ∈ S.

A tropical convex set X in Sn is a subset that is closed under
⊕ and scaling.
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Green’s relations

Let S = T or FT and let A,B ∈Mn(S).

(1) ALB ⇔ row space of A = row space of B.

(2) ARB ⇔ col. space of A = col. space of B.

(3) ADB ⇔ row space of A ∼= row space of B
⇔ col. space of A ∼= col. space of B

(Hollings and Kambites, 2010.)

We shall describe Green’s J -order and hence the
corresponding J -relation.
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Comparing D and J

First question should be is D = J ?

Theorem. (Izhakian and Margolis)
D 6= J in Mn(T) for all n > 3.

I We have also constructed a nice example (with pictures!)
to show that D 6= J for all n > 3.

Proposition. D = J in M2(T).

Theorem. The J -order in Mn(FT) is inherited from the
J -order in Mn(T).

However...

Theorem. D = J in Mn(FT) for all n > 1.
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Tropical projective space

We define tropical projective space PFTn by identifying two
elements of FTn if one is a finite tropical multiple of the other.

Note that we may identify PFTn with Rn−1 via

[x1, . . . , xn] 7→ (x1 − xn, . . . , xn−1 − xn).

Recall that we have a “distance function” on FTn defined by
dH(x, y) = 0 if x is a finite tropical multiple of y and

dH(x, y) = max(yi − xi)−min(yi − xi).

It can be shown that dH is a metric on PFTn.
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The key results used in the proof

1. Easy to check that dH induces the usual topology on Rn−1.

Each finitely generated convex set X ⊆ FTn induces a subset
PX of PFTn termed the projectivisation of X.

2. The projectivisation of each finitely generated convex set
X ⊆ FTn, denoted PX, is a closed and bounded (and hence
compact) subset of PFTn.

3. Metric Duality Theorem:
Let A ∈Mn(FT). There exist mutually inverse isometric
embeddings between PR(A) and PC(A).
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Comparing D and J

Theorem. D = J in Mn(FT).

Sketch proof Clearly ADB ⇒ AJB.
Suppose for contradiction that AJB, but A��DB.

Then there is a non-surjective isometric embedding

f : PR(A)→ PR(A).

Since f is not surjective and has closed image we may choose
x0 ∈ PR(A) and ε > 0 such that x0 /∈ f(PR(A)) and
dH(x0, z) > ε for all z ∈ f(X0).

Now set Xi = f i(PR(A)) and let xi = f i(x0) ∈ Xi.
Since f is an isometric embedding we have
dH(xi, y) > ε for all y ∈ Xi+1.

In particular dh(xi, xj) > ε for all j > i.
This contradicts the compactness of PR(A) ⊆ PFTn = Rn−1.
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Green’s J -order on Mn(T)

Theorem. Let A,B ∈Mn(T). Then the following are
equivalent.
(i) A 6J B;

(ii) There is a T-linear convex set X such that the row space of
A embeds linearly into X and the row space of B surjects
linearly onto X;

(iii) There is a T-linear convex set Y such that the col. space of
A embeds linearly into Y and the col. space of B surjects
linearly onto Y .
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The rank of a tropical matrix

There are several (non-equivalent) notions of the rank of a
tropical matrix. We define three such here...

factor rank(A) = the minimum k such that A can be
factored as A = CR where C is
n× k and R is k × n

det rank(A) = the maximum k such that A has a
k × k minor M with |M |+ 6= |M |−

tropical rank(A) = the maximum k such that A has a
k × k minor M where the max. is
achieved uniquely in the permanent of M .

Observation. The factor rank, det rank, tropical rank (and
others) are all J -class invariants in Mn(T).
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Comparing D and J

Example.

A =

 −∞ 0 1
−∞ −∞ 1

0 0 0

 , B =

 −∞ 0 2
−∞ −∞ 2

0 0 0


I It is easy to see that C(A) ⊆ C(B). Hence A 6R B.
I It is also easy to see that R(B) ⊆ R(A). Hence B 6L A.
I Thus we have shown that AJB.

I Claim that PC(A) is not isometric to PC(B). Thus, A��DB
since any isomorphism between the column spaces would
induce an isometry between the projective column spaces.

I It follows that D 6= J in Mn(T) for all n > 3.
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