Groups of tropical matrices

Marianne Johnson (joint work with Zur Izhakian and Mark Kambites) arXiv:1203.2449v1 [math.GR]

$25\mathrm{th}$ April2012

Research supported by EPSRC Grant EP/H000801/1 and the Alexander von Humboldt Foundation.

Let \mathbb{FT} denote the set of real numbers with operations \oplus and \otimes defined by

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b.$$

Let $M_n(\mathbb{FT})$ denote the set of all $n \times n$ matrices over \mathbb{FT} , with multiplication \otimes defined as you would expect:

$$(A \otimes B)_{i,j} = \bigoplus_{k=1}^{n} A_{i,k} \otimes B_{k,j}, \text{ for all } A, B \in M_n(\mathbb{FT}).$$

Then $(M_n(\mathbb{FT}), \otimes)$ is a semigroup.

Let S be a semigroup. Around every idempotent element $(E \in S, E^2 = E)$ there is a unique maximal subgroup H_E .

 $H_E = \{A \in S : E = PA = AQ \text{ and } A = XE = EY\}$

Let S be a semigroup. Around every idempotent element $(E \in S, E^2 = E)$ there is a unique maximal subgroup H_E .

 $H_E = \{A \in S : E = PA = AQ \text{ and } A = XE = EY\}$

Now let $S = M_n(\mathbb{FT})$. What are the maximal subgroups (up to isomorphism)?

Tropical matrices give tropical polytopes...

Let \mathbb{FT}^n denote the set of all real *n*-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

 $(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$

Tropical matrices give tropical polytopes...

Let \mathbb{FT}^n denote the set of all real *n*-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

 $(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT} -linear span of X:

 $\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$

Tropical matrices give tropical polytopes...

Let \mathbb{FT}^n denote the set of all real *n*-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

 $(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT} -linear span of X:

$$\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$$

Let $A \in M_n(\mathbb{FT})$. We define the row space $R(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the rows of A.

Similarly, we define the column space $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.

...and tropical polytopes look weird!

Maximal subgroups of $M_n(\mathbb{FT})$

- Let E be an idempotent in $M_n(\mathbb{FT})$.
- ► $M_n(\mathbb{FT})$ has a unique maximal subgroup H_E containing E.
- $H_E = \{A \in M_n(\mathbb{FT}) : E = PA = AQ \text{ and } A = XE = EY\}.$

Maximal subgroups of $M_n(\mathbb{FT})$

- Let E be an idempotent in $M_n(\mathbb{FT})$.
- ► $M_n(\mathbb{FT})$ has a unique maximal subgroup H_E containing E.
- $H_E = \{A \in M_n(\mathbb{FT}) : E = PA = AQ \text{ and } A = XE = EY\}.$
- ▶ It is not hard to see that

 $H_E = \{A \in M_n(\mathbb{FT}) : C(E) = C(A) \text{ and } R(E) = R(A)\}$

Maximal subgroups of $M_n(\mathbb{FT})$

- Let E be an idempotent in $M_n(\mathbb{FT})$.
- ► $M_n(\mathbb{FT})$ has a unique maximal subgroup H_E containing E.
- $H_E = \{A \in M_n(\mathbb{FT}) : E = PA = AQ \text{ and } A = XE = EY\}.$
- ▶ It is not hard to see that

 $H_E = \{A \in M_n(\mathbb{FT}) : C(E) = C(A) \text{ and } R(E) = R(A)\}$

Theorem

Let E be an idempotent in $M_n(\mathbb{FT})$. Then

- ► H_E is isomorphic to the group of FT-linear automorphisms of the column space C(E)
- ► H_E is isomorphic to the group of FT-linear automorphisms of the row space R(E).

Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

- The tropical dimension of V is the maximum topological dimension of V regarded as a subset of Rⁿ.
 We say that V has pure dimension if the open (within V) subsets of V all have the same topological dimension.
- The generator dimension of V is the minimum cardinality of a generating set for V.
- ► The dual dimension of V is the minimum k such that V embeds linearly into \mathbb{FT}^k .

In general, these dimensions can differ.

Dimensions of tropical polytopes

Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension k if and only if

 ${\cal V}$ is the column space of an idempotent.

Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension k if and only if V is the column space of an idempotent.

• If E is an idempotent with V = C(E), we say that E has rank k.

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices. Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem

Let E be an idempotent of rank n in $M_n(\mathbb{FT})$ and define

 $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.$

Then $H_E \cong G_E$.

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$ and consider the monoid $M_n(\mathbb{T})$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem

Let E be an idempotent of rank n in $M_n(\mathbb{FT})$ and define

 $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.$

Then $H_E \cong G_E$.

Theorem

Let *E* be an idempotent of rank *n* in $M_n(\mathbb{FT})$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$. So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

Theorem

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$. So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

Theorem

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$.

Corollary

Let H be a maximal subgroup of $M_n(\mathbb{FT})$ containing a rank k idempotent. Then $H \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_k$.

Idempotents, groups and finite metrics

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- C(E) has tropical dimension n.

Idempotents, groups and finite metrics

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- C(E) has tropical dimension n.

Theorem. [JK] Let E be an idempotent corresponding to a metric d on n points. Then $H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space ([n], d).

Idempotents, groups and finite metrics

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- C(E) has tropical dimension n.

Theorem. [JK] Let E be an idempotent corresponding to a metric d on n points. Then $H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space ([n], d).

Corollary. [JK] Let G be a finite group. Then $\mathbb{R} \times G$ is a maximal subgroup of $M_n(\mathbb{FT})$, for n sufficiently large.