Green's \mathcal{J} -order and the rank of max-plus matrices

Marianne Johnson (joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

17th International Linear Algebra Society Conference, Braunschweig, 24th August 2011

Notation:

Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} :

$$a \oplus b := \max(a, b),$$
 $a \otimes b := a + b,$
 $(a \oplus -\infty = -\infty \oplus a = a, \quad a \otimes -\infty = -\infty \otimes a = -\infty).$

We also define $\overline{\mathbb{T}} = \mathbb{R} \cup \{-\infty, +\infty\}$ where, as usual, we set $+\infty \otimes -\infty = -\infty \otimes +\infty = -\infty$.

Notation:

Let $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ and define two binary operations on \mathbb{T} :

$$\begin{array}{ll} a \oplus b := \max(a, b), & a \otimes b := a + b, \\ (a \oplus -\infty = -\infty \oplus a = a, & a \otimes -\infty = -\infty \otimes a = -\infty). \end{array}$$

We also define $\overline{\mathbb{T}} = \mathbb{R} \cup \{-\infty, +\infty\}$ where, as usual, we set $+\infty \otimes -\infty = -\infty \otimes +\infty = -\infty$.

Throughout let $S = \mathbb{T}$ or $\overline{\mathbb{T}}$. We study the multiplicative semigroup $(M_n(S), \otimes)$ of all $n \times n$ matrices with entries in S.

Green's \mathcal{J} -order and the \mathcal{J} -relation

Let M be any semigroup with identity element.

Green's relations are certain equivalence relations that describe the *ideal structure* of M.

In this talk we shall be interested in Green's \mathcal{J} -order and the corresponding \mathcal{J} -relation.

Green's \mathcal{J} -order and the \mathcal{J} -relation

Let M be any semigroup with identity element.

Green's relations are certain equivalence relations that describe the *ideal structure* of M.

In this talk we shall be interested in Green's \mathcal{J} -order and the corresponding \mathcal{J} -relation.

For $A, B \in M$ we define the order relation $\leq_{\mathcal{J}}$ by:

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M$.

Green's \mathcal{J} -order and the \mathcal{J} -relation

Let M be any semigroup with identity element.

Green's relations are certain equivalence relations that describe the *ideal structure* of M.

In this talk we shall be interested in Green's \mathcal{J} -order and the corresponding \mathcal{J} -relation.

For $A, B \in M$ we define the order relation $\leq_{\mathcal{J}}$ by:

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M$.

This gives rise to the equivalence relation \mathcal{J} :

 $A\mathcal{J}B$ if and only if $A \leq_{\mathcal{J}} B$ and $B \leq_{\mathcal{J}} A$.

Example: Green's \mathcal{J} -order on $M_n(K)$

Let K be a field and let $A, B \in M_n(K)$. Then

Example: Green's \mathcal{J} -order on $M_n(K)$

Let K be a field and let $A, B \in M_n(K)$. Then

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(K)$.

 $\begin{array}{rcl} A \leqslant_{\mathcal{J}} B & \Leftrightarrow & \text{row space of } A \text{ embeds in row space of } B. \\ \Leftrightarrow & \text{col. space of } A \text{ embeds in col. space of } B. \\ \Leftrightarrow & \text{rank}(A) \leqslant \text{rank}(B). \end{array}$

Example: Green's \mathcal{J} -order on $M_n(K)$

Let K be a field and let $A, B \in M_n(K)$. Then

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(K)$.

$$\begin{array}{lll} A \leqslant_{\mathcal{J}} B & \Leftrightarrow & \text{row space of } A \text{ embeds in row space of } B. \\ \Leftrightarrow & \text{col. space of } A \text{ embeds in col. space of } B. \\ \Leftrightarrow & \text{rank}(A) \leqslant \text{rank}(B). \end{array}$$

 $A\mathcal{J}B$ if and only if $A \leq_{\mathcal{J}} B$ and $B \leq_{\mathcal{J}} A$.

$$A\mathcal{J}B \iff \operatorname{rank}(A) = \operatorname{rank}(B).$$

Let $S = \mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_n(S)$. Then

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(S)$.

Aim: Describe $\leq_{\mathcal{J}}$ and \mathcal{J} on $M_n(S)$.

Let $S = \mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_n(S)$. Then

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(S)$.

Aim: Describe $\leq_{\mathcal{J}}$ and \mathcal{J} on $M_n(S)$.

Theorem 1. Let $A, B \in M_n(\mathbb{T})$. Then $A \leq_{\mathcal{J}} B$ in $M_n(\mathbb{T})$ if and only if $A \leq_{\mathcal{J}} B$ in $M_n(\overline{\mathbb{T}})$.

Thus it is enough to describe the \mathcal{J} -order and corresponding \mathcal{J} -relation on $M_n(\overline{\mathbb{T}})$.

Green's \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$

Recall that for $A, B \in M_n(\overline{\mathbb{T}})$

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(\overline{\mathbb{T}})$.

Theorem 2. Let $A, B \in M_n(\overline{\mathbb{T}})$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

Green's \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$

Recall that for $A, B \in M_n(\overline{\mathbb{T}})$

 $A \leq_{\mathcal{J}} B$ if and only if A = PBQ for some $P, Q \in M_n(\overline{\mathbb{T}})$.

Theorem 2. Let $A, B \in M_n(\overline{\mathbb{T}})$. Then the following are equivalent.

- (i) $A \leq_{\mathcal{J}} B;$
- (ii) There is a T-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
- (iii) There is a $\overline{\mathbb{T}}$ -linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Green's \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$ and embeddings

Q: Can the \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$ be characterised as linear embedding of row/col. spaces?

Let $A, B \in M_n(\overline{\mathbb{T}})$. It follows easily from Theorem 2 that

- If R(A) embeds linearly in R(B) then $A \leq_{\mathcal{J}} B$.
- If C(A) embeds linearly in C(B) then $A \leq_{\mathcal{J}} B$.

Green's \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$ and embeddings

Q: Can the \mathcal{J} -order on $M_n(\overline{\mathbb{T}})$ be characterised as linear embedding of row/col. spaces?

Let $A, B \in M_n(\overline{\mathbb{T}})$. It follows easily from Theorem 2 that

- If R(A) embeds linearly in R(B) then $A \leq_{\mathcal{J}} B$.
- If C(A) embeds linearly in C(B) then $A \leq_{\mathcal{J}} B$.

For $n \ge 4$ it can be shown that the converse to the above statements is false.

i.e. there exist matrices $A, B \in M_n(\overline{\mathbb{T}})$ such that $A \leq_{\mathcal{J}} B$, but R(A) does not embed linearly into R(B).

A: No!

Theorem 3. Let R be a commutative semiring and let $f: M_n(R) \to \mathbb{N}_0$. Then f respects the \mathcal{J} -order if and only if

 $f(AB) \leq \min(f(A), f(B)).$

Theorem 3. Let R be a commutative semiring and let $f: M_n(R) \to \mathbb{N}_0$. Then f respects the \mathcal{J} -order if and only if

 $f(AB) \leq \min(f(A), f(B)).$

Example. Let K be a field. It is straight-forward to verify that the rank-product inequality

 $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$

holds for all $A, B \in M_n(K)$.

Theorem 3. Let R be a commutative semiring and let $f: M_n(R) \to \mathbb{N}_0$. Then f respects the \mathcal{J} -order if and only if

 $f(AB) \leq \min(f(A), f(B)).$

Example. Let K be a field. It is straight-forward to verify that the rank-product inequality

 $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$

holds for all $A, B \in M_n(K)$.

Observation. Any notion of "rank" on $M_n(R)$ satisfying the rank-product inequality will be a \mathcal{J} -class invariant.

The rank of a max-plus matrix

There are several (non-equivalent) notions of the rank of a max-plus matrix:

- $\begin{aligned} \text{factor rank}(A) &= \text{ the minimum } k \text{ such that } A \text{ can be} \\ \text{factored as } A &= CR \text{ where } C \text{ is} \\ n \times k \text{ and } R \text{ is } k \times n \end{aligned}$
 - det rank(A) = the maximum k such that A has a $k \times k$ minor M with $|M|^+ \neq |M|^-$
- tropical rank(A) = the maximum k such that A has a $k \times k$ minor M where the max. is achieved uniquely in the permanent of M.
- $GM \text{ row rank}(A) = maximal number of Gondoran-Minoux}$ linearly independent rows of A.

Max-plus rank-product inequalities

Theorem. [Akian, Gaubert, Guterman, 2009] Let $A, B \in M_n(\mathbb{T})$. Then

 $factor rank(AB) \leq min(factor rank(A), factor rank(B))$

 $\det \operatorname{rank}(AB) \leqslant \min(\det \operatorname{rank}(A), \det \operatorname{rank}(B))$

tropical $\operatorname{rank}(AB) \leq \min(\operatorname{tropical rank}(A), \operatorname{tropical rank}(B)).$

Theorem. [Shitov, 2010] Let $A, B \in M_n(\mathbb{T})$. Then

 $\begin{array}{lll} \operatorname{GM}\operatorname{row}\operatorname{rank}(AB) &\leqslant & \min(\operatorname{GM}\operatorname{row}\operatorname{rank}(A),\operatorname{GM}\operatorname{row}\operatorname{rank}(B)) \\ \operatorname{GM}\operatorname{col}\operatorname{rank}(AB) &\leqslant & \min(\operatorname{GM}\operatorname{col}\operatorname{rank}(A),\operatorname{GM}\operatorname{col}\operatorname{rank}(B)) \end{array}$

Corollary. The factor rank, det rank and tropical rank are all \mathcal{J} -class invariants in $M_n(\mathbb{T})$.