Green's \mathcal{J}-order and the rank of max-plus matrices

Marianne Johnson
(joint work with Mark Kambites) arXiv:1102.2707v1 [math.RA]

17th International Linear Algebra Society Conference, Braunschweig, 24th August 2011

Max-plus matrix semigroups

Notation:

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} :

$$
\begin{array}{rlrl}
a \oplus b & :=\max (a, b), & a \otimes b:=a+b, \\
(a \oplus-\infty & =-\infty \oplus a=a, & a \otimes-\infty & =-\infty \otimes a=-\infty) .
\end{array}
$$

We also define $\overline{\mathbb{T}}=\mathbb{R} \cup\{-\infty,+\infty\}$ where, as usual, we set $+\infty \otimes-\infty=-\infty \otimes+\infty=-\infty$.

Max-plus matrix semigroups

Notation:

Let $\mathbb{T}=\mathbb{R} \cup\{-\infty\}$ and define two binary operations on \mathbb{T} :

$$
\begin{aligned}
a \oplus b & :=\max (a, b), & a \otimes b:=a+b, \\
(a \oplus-\infty & =-\infty \oplus a=a, & a \otimes-\infty=-\infty \otimes a=-\infty) .
\end{aligned}
$$

We also define $\overline{\mathbb{T}}=\mathbb{R} \cup\{-\infty,+\infty\}$ where, as usual, we set $+\infty \otimes-\infty=-\infty \otimes+\infty=-\infty$.

```
Throughout let S=\mathbb{T}\mathrm{ or }\overline{\mathbb{T}}\mathrm{ .}
We study the multiplicative semigroup ( }\mp@subsup{M}{n}{}(S),\otimes
of all n\timesn matrices with entries in S.
```


Green's \mathcal{J}-order and the \mathcal{J}-relation

Let M be any semigroup with identity element.
Green's relations are certain equivalence relations that describe the ideal structure of M.

In this talk we shall be interested in Green's \mathcal{J}-order and the corresponding \mathcal{J}-relation.

Green's \mathcal{J}-order and the \mathcal{J}-relation

Let M be any semigroup with identity element.
Green's relations are certain equivalence relations that describe the ideal structure of M.

In this talk we shall be interested in Green's \mathcal{J}-order and the corresponding \mathcal{J}-relation.

For $A, B \in M$ we define the order relation $\leqslant_{\mathcal{J}}$ by:

$$
A \leqslant_{\mathcal{J}} B \text { if and only if } A=P B Q \text { for some } P, Q \in M
$$

Green's \mathcal{J}-order and the \mathcal{J}-relation

Let M be any semigroup with identity element.
Green's relations are certain equivalence relations that describe the ideal structure of M.

In this talk we shall be interested in Green's \mathcal{J}-order and the corresponding \mathcal{J}-relation.

For $A, B \in M$ we define the order relation $\leqslant \mathcal{J}$ by:

$$
A \leqslant \mathcal{J} B \text { if and only if } A=P B Q \text { for some } P, Q \in M
$$

This gives rise to the equivalence relation \mathcal{J} :

$$
A \mathcal{J} B \text { if and only if } A \leqslant_{\mathcal{J}} B \text { and } B \leqslant_{\mathcal{J}} A .
$$

Example: Green's \mathcal{J}-order on $M_{n}(K)$

Let K be a field and let $A, B \in M_{n}(K)$. Then

Example: Green's \mathcal{J}-order on $M_{n}(K)$

Let K be a field and let $A, B \in M_{n}(K)$. Then

$$
A \leqslant_{\mathcal{J}} B \text { if and only if } A=P B Q \text { for some } P, Q \in M_{n}(K)
$$

$A \leqslant \mathcal{J} B \Leftrightarrow$ row space of A embeds in row space of B.
$\Leftrightarrow \quad$ col. space of A embeds in col. space of B.
$\Leftrightarrow \quad \operatorname{rank}(A) \leqslant \operatorname{rank}(B)$.

Example: Green's \mathcal{J}-order on $M_{n}(K)$

Let K be a field and let $A, B \in M_{n}(K)$. Then
$A \leqslant_{\mathcal{J}} B$ if and only if $A=P B Q$ for some $P, Q \in M_{n}(K)$.
$A \leqslant \mathcal{J} B \Leftrightarrow$ row space of A embeds in row space of B.
$\Leftrightarrow \quad$ col. space of A embeds in col. space of B.
$\Leftrightarrow \quad \operatorname{rank}(A) \leqslant \operatorname{rank}(B)$.
$A \mathcal{J} B$ if and only if $A \leqslant_{\mathcal{J}} B$ and $B \leqslant_{\mathcal{J}} A$.
$A \mathcal{J} B \Leftrightarrow \operatorname{rank}(A)=\operatorname{rank}(B)$.

What is Green's \mathcal{J}-order on $M_{n}(S)$?

Let $S=\mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_{n}(S)$. Then

$$
A \leqslant \mathcal{J} B \text { if and only if } A=P B Q \text { for some } P, Q \in M_{n}(S)
$$

Aim: Describe $\leqslant \mathcal{J}$ and \mathcal{J} on $M_{n}(S)$.

What is Green's \mathcal{J}-order on $M_{n}(S)$?

Let $S=\mathbb{T}$ or $\overline{\mathbb{T}}$ and let $A, B \in M_{n}(S)$. Then

$$
A \leqslant \mathcal{J} B \text { if and only if } A=P B Q \text { for some } P, Q \in M_{n}(S)
$$

Aim: Describe $\leqslant \mathcal{J}$ and \mathcal{J} on $M_{n}(S)$.
Theorem 1. Let $A, B \in M_{n}(\mathbb{T})$.
Then $A \leqslant_{\mathcal{J}} B$ in $M_{n}(\mathbb{T})$ if and only if $A \leqslant_{\mathcal{J}} B$ in $M_{n}(\overline{\mathbb{T}})$.
Thus it is enough to describe the \mathcal{J}-order and corresponding \mathcal{J}-relation on $M_{n}(\overline{\mathbb{T}})$.

Green's \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$

Recall that for $A, B \in M_{n}(\overline{\mathbb{T}})$

$$
A \leqslant_{\mathcal{J}} B \text { if and only if } A=P B Q \text { for some } P, Q \in M_{n}(\overline{\mathbb{T}})
$$

Theorem 2. Let $A, B \in M_{n}(\overline{\mathbb{T}})$. Then the following are equivalent.
(i) $A \leqslant_{\mathcal{J}} B$;
(ii) There is a $\overline{\mathbb{T}}$-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;

Green's \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$

Recall that for $A, B \in M_{n}(\overline{\mathbb{T}})$

$$
A \leqslant_{\mathcal{J}} B \text { if and only if } A=P B Q \text { for some } P, Q \in M_{n}(\overline{\mathbb{T}})
$$

Theorem 2. Let $A, B \in M_{n}(\overline{\mathbb{T}})$. Then the following are equivalent.
(i) $A \leqslant \mathcal{J} B$;
(ii) There is a $\overline{\mathbb{T}}$-linear convex set X such that the row space of A embeds linearly into X and the row space of B surjects linearly onto X;
(iii) There is a $\overline{\mathbb{T}}$-linear convex set Y such that the col. space of A embeds linearly into Y and the col. space of B surjects linearly onto Y.

Green's \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$ and embeddings

Q: Can the \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$ be characterised as linear embedding of row/col. spaces?

Let $A, B \in M_{n}(\overline{\mathbb{T}})$. It follows easily from Theorem 2 that

- If $R(A)$ embeds linearly in $R(B)$ then $A \leqslant \mathcal{J} B$.
- If $C(A)$ embeds linearly in $C(B)$ then $A \leqslant \mathcal{J} B$.

Green's \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$ and embeddings

Q: Can the \mathcal{J}-order on $M_{n}(\overline{\mathbb{T}})$ be characterised as linear embedding of row/col. spaces?

Let $A, B \in M_{n}(\overline{\mathbb{T}})$. It follows easily from Theorem 2 that

- If $R(A)$ embeds linearly in $R(B)$ then $A \leqslant_{\mathcal{J}} B$.
- If $C(A)$ embeds linearly in $C(B)$ then $A \leqslant \mathcal{J} B$.

For $n \geqslant 4$ it can be shown that the converse to the above statements is false.
i.e. there exist matrices $A, B \in M_{n}(\overline{\mathbb{T}})$ such that $A \leqslant_{\mathcal{J}} B$, but $R(A)$ does not embed linearly into $R(B)$.

A: No!

Green's \mathcal{J}-order on $M_{n}(R)$ and rank

Theorem 3. Let R be a commutative semiring and let $f: M_{n}(R) \rightarrow \mathbb{N}_{0}$. Then f respects the \mathcal{J}-order if and only if

$$
f(A B) \leqslant \min (f(A), f(B))
$$

Green's \mathcal{J}-order on $M_{n}(R)$ and rank

Theorem 3. Let R be a commutative semiring and let $f: M_{n}(R) \rightarrow \mathbb{N}_{0}$. Then f respects the \mathcal{J}-order if and only if

$$
f(A B) \leqslant \min (f(A), f(B))
$$

Example. Let K be a field. It is straight-forward to verify that the rank-product inequality

$$
\operatorname{rank}(A B) \leqslant \min (\operatorname{rank}(A), \operatorname{rank}(B))
$$

holds for all $A, B \in M_{n}(K)$.

Green's \mathcal{J}-order on $M_{n}(R)$ and rank

Theorem 3. Let R be a commutative semiring and let
$f: M_{n}(R) \rightarrow \mathbb{N}_{0}$. Then f respects the \mathcal{J}-order if and only if

$$
f(A B) \leqslant \min (f(A), f(B))
$$

Example. Let K be a field. It is straight-forward to verify that the rank-product inequality

$$
\operatorname{rank}(A B) \leqslant \min (\operatorname{rank}(A), \operatorname{rank}(B))
$$

holds for all $A, B \in M_{n}(K)$.
Observation. Any notion of "rank" on $M_{n}(R)$ satisfying the rank-product inequality will be a \mathcal{J}-class invariant.

The rank of a max-plus matrix

There are several (non-equivalent) notions of the rank of a max-plus matrix:
factor $\operatorname{rank}(A)=$ the minimum k such that A can be factored as $A=C R$ where C is $n \times k$ and R is $k \times n$
det $\operatorname{rank}(A)=$ the maximum k such that A has a $k \times k$ minor M with $|M|^{+} \neq|M|^{-}$
tropical $\operatorname{rank}(A)=$ the maximum k such that A has a $k \times k$ minor M where the max. is achieved uniquely in the permanent of M.

GM row $\operatorname{rank}(A)=$ maximal number of Gondoran-Minoux linearly independent rows of A.

Max-plus rank-product inequalities

Theorem. [Akian, Gaubert, Guterman, 2009]
Let $A, B \in M_{n}(\mathbb{T})$. Then
factor $\operatorname{rank}(A B) \leqslant \min ($ factor $\operatorname{rank}(A)$, factor $\operatorname{rank}(B)$) det $\operatorname{rank}(A B) \leqslant \min (\operatorname{det} \operatorname{rank}(A), \operatorname{det} \operatorname{rank}(B))$ tropical $\operatorname{rank}(A B) \leqslant \min (\operatorname{tropical} \operatorname{rank}(A), \operatorname{tropical} \operatorname{rank}(B))$.

Theorem. [Shitov, 2010]
Let $A, B \in M_{n}(\mathbb{T})$. Then
GM row $\operatorname{rank}(A B) \leqslant \min (\mathrm{GM}$ row $\operatorname{rank}(A), \mathrm{GM}$ row $\operatorname{rank}(B))$
GM col $\operatorname{rank}(A B) \leqslant \min (\mathrm{GM}$ col $\operatorname{rank}(A), \mathrm{GM}$ col $\operatorname{rank}(B))$

Corollary. The factor rank, det rank and tropical rank are all \mathcal{J}-class invariants in $M_{n}(\mathbb{T})$.

