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The semigroup of tropical matrices

Let FT denote the tropical semifield FT = (R,⊕,⊗), where

a⊕ b := max(a, b), a⊗ b := a+ b.

and let Mn(FT) denote the set of all n× n matrices over FT,
with multiplication ⊗ defined in the obvious way.

It is easy to see that (Mn(FT),⊗) is a semigroup.

We are interested in the algebraic structure of this semi-
group, much of which can be neatly described using some
geometric ideas.
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Tropical matrices and tropical polytopes

Let FTn denote the set of all real n-tuples v = (v1, . . . , vn) with
obvious operations of addition and scalar multiplication:

(v ⊕ w)i = vi ⊕ wi, (λ⊗ v)i = λ⊗ vi.

Given a finite subset X = {x1, . . . , xr} ⊂ FT
n, the tropical

polytope generated by X is the FT-linear span of X:

{λ1 ⊗ x1 ⊕ · · · ⊕ λr ⊗ xr : λi ∈ FT}.
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Let FTn denote the set of all real n-tuples v = (v1, . . . , vn) with
obvious operations of addition and scalar multiplication:

(v ⊕ w)i = vi ⊕ wi, (λ⊗ v)i = λ⊗ vi.

Given a finite subset X = {x1, . . . , xr} ⊂ FT
n, the tropical

polytope generated by X is the FT-linear span of X:

{λ1 ⊗ x1 ⊕ · · · ⊕ λr ⊗ xr : λi ∈ FT}.

Let A ∈ Mn(FT). We define the row space R(A) ⊆ FT
n to

be the tropical polytope generated by the rows of A.

Similarly, we define the column space C(A) ⊆ FT
n to be the

tropical polytope generated by the columns of A.
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Some tropical polytopes in FT
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On the structure of semigroups

Green’s relations: Equivalence relations that can be defined
upon any semigroup S and encapsulate the ideal and
subgroup structure of S.

For A,B ∈ S...

◮ ALB if ∃X,Y ∈ S1 such that A = XB and B = Y A.

◮ ARB if ∃X,Y ∈ S1 such that A = BX and B = AY .

◮ AHB if ALB and ARB.
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Green’s relations: Equivalence relations that can be defined
upon any semigroup S and encapsulate the ideal and
subgroup structure of S.

For A,B ∈ S...

◮ ALB if ∃X,Y ∈ S1 such that A = XB and B = Y A.

◮ ARB if ∃X,Y ∈ S1 such that A = BX and B = AY .

◮ AHB if ALB and ARB.

In Mn(FT):
ALB if and only if R(A) = R(B).
ARB if and only if C(A) = C(B).
AHB if and only if R(A) = R(B) AND C(A) = C(B).
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Idempotents and maximal subgroups

Let S be a semigroup.
The idempotent elements (E ∈ S, E2 = E) play a special
role in the study of the subgroup structure of S.

Around every idempotent element there is a unique maximal
subgroup HE. This is the H-equivalence class of E.

HE = {A ∈ S : AHE}

6/ 14



Idempotents and maximal subgroups

Let S be a semigroup.
The idempotent elements (E ∈ S, E2 = E) play a special
role in the study of the subgroup structure of S.

Around every idempotent element there is a unique maximal
subgroup HE. This is the H-equivalence class of E.

HE = {A ∈ S : AHE}

◮ What are the maximal subgroups of Mn(FT)?
(i.e. What are the H-equivalence classes of
idempotents?)

◮ What kinds of group arise?
(i.e. What are these groups up to isomorphism?)
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Maximal subgroups of Mn(FT)

Given an idempotent E ∈ Mn(FT) it is clear from the previous
definitions that

HE = {A ∈ Mn(FT : R(A) = R(E) and C(A) = C(E)}
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Maximal subgroups of Mn(FT)

Given an idempotent E ∈ Mn(FT) it is clear from the previous
definitions that

HE = {A ∈ Mn(FT : R(A) = R(E) and C(A) = C(E)}

Theorem Let E be an idempotent in Mn(FT). Then

◮ HE is isomorphic to the group of FT-linear
automorphisms of the column space C(E)

◮ HE is isomorphic to the group of FT-linear
automorphisms of the row space R(E).
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Three notions of dimension

Let V ⊆ FT
n be a tropical polytope.

◮ The tropical dimension of V is the maximum topological
dimension of V regarded as a subset of Rn.
We say that the tropical dimension is pure if the open
(within V ) subsets of V all have the same topological
dimension.

◮ The generator dimension of V is the minimum cardinality
of a generating set for V .

◮ The dual dimension of V is the minimum k such that V
embeds linearly into FT

k.

In general, these dimensions can differ.
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Dimensions of tropical polytopes
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Idempotents, projectivity and dimensions

Theorem Let V ⊆ FT
n be a tropical polytope.

There is a positive integer k such that V has pure tropical
dimension k, generator dimension k and dual dimension k

if and only if
V is the column space of an idempotent

if and only if
V is projective as an FT-module.
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Idempotents, projectivity and dimensions

Theorem Let V ⊆ FT
n be a tropical polytope.

There is a positive integer k such that V has pure tropical
dimension k, generator dimension k and dual dimension k

if and only if
V is the column space of an idempotent

if and only if
V is projective as an FT-module.

◮ If E is an idempotent in Mn(FT), we say that E has rank
k if the dimension (in any sense) of C(E) is k.
(Note: 1 6 rank(E) 6 n)

◮ Idempotents of full rank n have a particularly nice
structure; their row and column spaces are convex in
the ordinary sense.
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Maximal subgroups for idempotents of full rank

Let T = FT ∪ {−∞}.
The units in Mn(T) are the tropical monomial matrices.
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Maximal subgroups for idempotents of full rank

Let T = FT ∪ {−∞}.
The units in Mn(T) are the tropical monomial matrices.

Theorem
Let E be an idempotent of rank n in Mn(FT) and define
GE = {G : G is a unit in Mn(T) and GE = EG}.
Then HE

∼= GE .

Corollary
Every FT-module automorphism of C(E)

(i) extends to an automorphism of FTn and

(ii) is a (classical) affine linear map.
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Maximal subgroups for idempotents of full rank

Let E be an idempotent of rank n in Mn(FT), so that
HE

∼= GE .

Theorem
Let R = {λ ⊗ In} and Σ = {G ∈ GE : G has eigenvalue 0}.
Then GE = R× Σ.
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Maximal subgroups for idempotents of full rank

Let E be an idempotent of rank n in Mn(FT), so that
HE

∼= GE .

Theorem
Let R = {λ ⊗ In} and Σ = {G ∈ GE : G has eigenvalue 0}.
Then GE = R× Σ.

It is clear that R ∼= R and not hard to show that the map
Σ → Sn sending each unit G to its associated permutation is
injective, giving:

Theorem
Let E be an idempotent of rank n in Mn(FT).
Then HE

∼= R× Σ, for some Σ 6 Sn.
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Maximal subgroups of Mn(FT)

So, for an idempotent E of full rank n, the corresponding
maximal subgroup is isomorphic to a direct product of R with a
finite group Σ 6 Sn. What about when E has rank < n?
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Maximal subgroups of Mn(FT)

So, for an idempotent E of full rank n, the corresponding
maximal subgroup is isomorphic to a direct product of R with a
finite group Σ 6 Sn. What about when E has rank < n?

Theorem
Let E be an idempotent of rank k in Mn(FT).
Then there is a idempotent F ∈ Mk(FT) such that F has
rank k and HE

∼= HF .

Corollary
Let H be a maximal subgroup of Mn(FT) containing a rank
k idempotent. Then H ∼= R× Σ, for some Σ 6 Sk.
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Idempotents, groups and finite metrics

Let [n] = {1, . . . , n} and let d : [n]× [n] → R be a metric.
Consider the n× n matrix E with Ei,j = −d(i, j).
Then

◮ E ⊗E = E;
◮ E has full rank n.
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Idempotents, groups and finite metrics

Let [n] = {1, . . . , n} and let d : [n]× [n] → R be a metric.
Consider the n× n matrix E with Ei,j = −d(i, j).
Then

◮ E ⊗E = E;
◮ E has full rank n.

Theorem [JK]
The columns of E with respect to dH form a metric space
isometric to ([n], d).

Theorem [JK]
HE

∼= R×I, where I is the isometry group of the finite metric
space ([n], d).

Corollary [JK]
Let G be a finite group. Then R×G is a maximal subgroup
of Mn(FT), for n sufficiently large.
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