Idempotent tropical matrices: graphs, groups and metric spaces

Marianne Johnson (joint work with Zur Izhakian and Mark Kambites) arXiv:1203.2449v1 [math.GR]

$28\mathrm{th}$ June2012

Research supported by EPSRC Grant EP/H000801/1 and the Alexander von Humboldt Foundation.

Let \mathbb{FT} denote the tropical semifield $\mathbb{FT} = (\mathbb{R}, \oplus, \otimes)$, where

$$a \oplus b := \max(a, b), \quad a \otimes b := a + b.$$

and let $M_n(\mathbb{FT})$ denote the set of all $n \times n$ matrices over \mathbb{FT} , with multiplication \otimes defined in the obvious way.

It is easy to see that $(M_n(\mathbb{FT}), \otimes)$ is a **semigroup**.

We are interested in the **algebraic** structure of this semigroup, much of which can be neatly described using some **geometric** ideas.

Tropical matrices and tropical polytopes

Let \mathbb{FT}^n denote the set of all real *n*-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

 $(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT} -linear span of X:

 $\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$

Tropical matrices and tropical polytopes

Let \mathbb{FT}^n denote the set of all real *n*-tuples $v = (v_1, \ldots, v_n)$ with obvious operations of addition and scalar multiplication:

 $(v \oplus w)_i = v_i \oplus w_i, \quad (\lambda \otimes v)_i = \lambda \otimes v_i.$

Given a finite subset $X = \{x_1, \ldots, x_r\} \subset \mathbb{FT}^n$, the tropical polytope generated by X is the \mathbb{FT} -linear span of X:

$$\{\lambda_1 \otimes x_1 \oplus \cdots \oplus \lambda_r \otimes x_r : \lambda_i \in \mathbb{FT}\}.$$

Let $A \in M_n(\mathbb{FT})$. We define the row space $R(A) \subseteq \overline{\mathbb{FT}^n}$ to be the tropical polytope generated by the rows of A.

Similarly, we define the column space $C(A) \subseteq \mathbb{FT}^n$ to be the tropical polytope generated by the columns of A.

Some tropical polytopes in \mathbb{FT}^3

Green's relations: Equivalence relations that can be defined upon any semigroup S and encapsulate the **ideal and subgroup structure** of S.

For $A, B \in S...$

- $A\mathcal{L}B$ if $\exists X, Y \in S^1$ such that A = XB and B = YA.
- $A\mathcal{R}B$ if $\exists X, Y \in S^1$ such that A = BX and B = AY.
- AHB if ALB and ARB.

Green's relations: Equivalence relations that can be defined upon any semigroup S and encapsulate the **ideal and subgroup structure** of S.

For $A, B \in S...$

- $A\mathcal{L}B$ if $\exists X, Y \in S^1$ such that A = XB and B = YA.
- $A\mathcal{R}B$ if $\exists X, Y \in S^1$ such that A = BX and B = AY.
- AHB if ALB and ARB.

In $M_n(\mathbb{FT})$: $A\mathcal{L}B$ if and only if R(A) = R(B). $A\mathcal{R}B$ if and only if C(A) = C(B). $A\mathcal{H}B$ if and only if R(A) = R(B) AND C(A) = C(B).

Idempotents and maximal subgroups

Let S be a semigroup.

The **idempotent elements** $(E \in S, E^2 = E)$ play a special role in the study of the subgroup structure of S.

Around every idempotent element there is a unique **maximal** subgroup H_E . This is the \mathcal{H} -equivalence class of E.

 $H_E = \{A \in S : A\mathcal{H}E\}$

Idempotents and maximal subgroups

Let S be a semigroup.

The **idempotent elements** $(E \in S, E^2 = E)$ play a special role in the study of the subgroup structure of S.

Around every idempotent element there is a unique **maximal** subgroup H_E . This is the \mathcal{H} -equivalence class of E.

 $H_E = \{A \in S : A\mathcal{H}E\}$

- ▶ What are the maximal subgroups of M_n(FT)? (i.e. What are the *H*-equivalence classes of idempotents?)
- What kinds of group arise?(i.e. What are these groups up to isomorphism?)

Given an idempotent $E\in M_n(\mathbb{FT})$ it is clear from the previous definitions that

 $H_E = \{A \in M_n(\mathbb{FT} : R(A) = R(E) \text{ and } C(A) = C(E)\}$

Given an idempotent $E\in M_n(\mathbb{FT})$ it is clear from the previous definitions that

 $H_E = \{A \in M_n(\mathbb{FT} : R(A) = R(E) \text{ and } C(A) = C(E)\}$

Theorem Let *E* be an idempotent in $M_n(\mathbb{FT})$. Then

- ► H_E is isomorphic to the group of FT-linear automorphisms of the column space C(E)
- ► H_E is isomorphic to the group of FT-linear automorphisms of the row space R(E).

Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

- The tropical dimension of V is the maximum topological dimension of V regarded as a subset of Rⁿ.
 We say that the tropical dimension is pure if the open (within V) subsets of V all have the same topological dimension.
- The generator dimension of V is the minimum cardinality of a generating set for V.
- ▶ The dual dimension of V is the minimum k such that V embeds linearly into \mathbb{FT}^k .

In general, these dimensions can differ.

Dimensions of tropical polytopes

Idempotents, projectivity and dimensions

Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension kif and only if V is the column space of an idempotent if and only if V is projective as an \mathbb{FT} -module.

Idempotents, projectivity and dimensions

Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension kif and only if V is the column space of an idempotent if and only if V is projective as an FT-module.

• If E is an idempotent in $M_n(\mathbb{FT})$, we say that E has **rank** k if the dimension (in any sense) of C(E) is k. (Note: $1 \leq \operatorname{rank}(E) \leq n$)

Idempotents, projectivity and dimensions

Theorem Let $V \subseteq \mathbb{FT}^n$ be a tropical polytope.

There is a positive integer k such that V has pure tropical dimension k, generator dimension k and dual dimension kif and only if V is the column space of an idempotent if and only if V is projective as an FT-module.

- If E is an idempotent in $M_n(\mathbb{FT})$, we say that E has **rank** k if the dimension (in any sense) of C(E) is k. (Note: $1 \leq \operatorname{rank}(E) \leq n$)
- ► Idempotents of **full rank** *n* have a particularly nice structure; their row and column spaces are convex in the ordinary sense.

Maximal subgroups for idempotents of full rank

Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices. Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem

Let *E* be an idempotent of rank *n* in $M_n(\mathbb{FT})$ and define $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.$ Then $H_E \cong G_E$. Let $\mathbb{T} = \mathbb{FT} \cup \{-\infty\}$. The **units** in $M_n(\mathbb{T})$ are the tropical monomial matrices.

Theorem

Let *E* be an idempotent of rank *n* in $M_n(\mathbb{FT})$ and define $G_E = \{G : G \text{ is a unit in } M_n(\mathbb{T}) \text{ and } GE = EG\}.$ Then $H_E \cong G_E$.

Corollary

Every \mathbb{FT} -module automorphism of C(E)

(i) extends to an automorphism of \mathbb{FT}^n and

(ii) is a (classical) affine linear map.

Maximal subgroups for idempotents of full rank

Let E be an idempotent of rank n in $M_n(\mathbb{FT})$, so that $H_E \cong G_E$.

Theorem

Let $R = \{\lambda \otimes I_n\}$ and $\Sigma = \{G \in G_E : G \text{ has eigenvalue } 0\}$. Then $G_E = R \times \Sigma$. Let E be an idempotent of rank n in $M_n(\mathbb{FT})$, so that $H_E \cong G_E$.

Theorem Let $R = \{\lambda \otimes I_n\}$ and $\Sigma = \{G \in G_E : G \text{ has eigenvalue } 0\}$. Then $G_E = R \times \Sigma$.

It is clear that $R \cong \mathbb{R}$ and not hard to show that the map $\Sigma \to S_n$ sending each unit G to its associated permutation is injective, giving:

Theorem

Let *E* be an idempotent of rank *n* in $M_n(\mathbb{FT})$. Then $H_E \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_n$. So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

Theorem

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$. So, for an idempotent E of full rank n, the corresponding maximal subgroup is isomorphic to a direct product of \mathbb{R} with a finite group $\Sigma \leq S_n$. What about when E has rank < n?

Theorem

Let *E* be an idempotent of rank *k* in $M_n(\mathbb{FT})$. Then there is a idempotent $F \in M_k(\mathbb{FT})$ such that *F* has rank *k* and $H_E \cong H_F$.

Corollary

Let H be a maximal subgroup of $M_n(\mathbb{FT})$ containing a rank k idempotent. Then $H \cong \mathbb{R} \times \Sigma$, for some $\Sigma \leq S_k$.

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- \blacktriangleright E has full rank n.

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- E has full rank n.

Theorem [JK]

The columns of E with respect to d_H form a metric space isometric to ([n], d).

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i,j)$. Then

- $\blacktriangleright E \otimes E = E$:
- \triangleright E has full rank n.

Theorem [JK]

The columns of E with respect to d_H form a metric space isometric to ([n], d).

Theorem [JK]

 $H_E \cong \mathbb{R} \times I$, where I is the isometry group of the finite metric space ([n], d).

Let $[n] = \{1, \ldots, n\}$ and let $d : [n] \times [n] \to \mathbb{R}$ be a metric. Consider the $n \times n$ matrix E with $E_{i,j} = -d(i, j)$. Then

- $\blacktriangleright E \otimes E = E;$
- E has full rank n.

Theorem [JK]

The columns of E with respect to d_H form a metric space isometric to ([n], d).

Theorem [**JK**] $H_E \cong \mathbb{R} \times I$, where *I* is th

 $H_E\cong \mathbb{R}\times I,$ where I is the isometry group of the finite metric space ([n],d).

Corollary [JK]

Let G be a finite group. Then $\mathbb{R} \times G$ is a maximal subgroup of $M_n(\mathbb{FT})$, for n sufficiently large.